ﻻ يوجد ملخص باللغة العربية
Mostly forsaken, but revived after the emergence of all-dielectric nanophotonics, the Kerker effect can be observed in a variety of nanostructures from high-index constituents with strong electric and magnetic Mie resonances. Necessary requirement for the existence of a magnetic response limits the use of generally non-magnetic conventional plasmonic nanostructures for the Kerker effect. In spite of this, we demonstrate here for the first time the emergence of the lattice Kerker effect in regular plasmonic Al nanostructures. Collective lattice oscillations emerging from delicate interplay between Rayleigh anomalies and localized surface plasmon resonances both of electric and magnetic dipoles, and electric and magnetic quadrupoles result in suppression of the backscattering in a broad spectral range. Variation of geometrical parameters of Al arrays allows for tailoring lattice Kerker effect throughout UV and visible wavelength ranges, which is close to impossible to achieve using other plasmonic or all-dielectric materials. It is argued that our results set the ground for wide ramifications in the plasmonics and further application of the Kerker effect.
We present the review of some new problems in cosmology and physics of stars in connection with future launching of WSO. We discuss three problems. UV observations of distant z > 6 quasars allow to obtain information on the soft < 1 KeV X-ray radiati
The measured experimental results of optical diffraction of 10, 5 and 3.4 micrometer period plasmonic surface relief grating are presented for the application of band-pass filter in visible spectral range. Conventional scanning electron microscopic (
Plasmonic nanostructures and devices are rapidly transforming light manipulation technology by allowing to modify and enhance optical fields on sub-wavelength scales. Advances in this field rely heavily on the development of new characterization meth
Single molecule detection provides detailed information about molecular structures and functions, but it generally requires the presence of a fluorescent marker which can interfere with the activity of the target molecule or complicate the sample pro
Transverse Kerker effect is known by the directional scattering of an electromagnetic plane wave perpendicular to the propagation direction with nearly suppression of both forward and backward scattering. Compared with plane waves, localized electrom