ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy Efficiency Through Joint Routing and Function Placement in Different Modes of SDN/NFV Networks

72   0   0.0 ( 0 )
 نشر من قبل Reza Moosavi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Network function virtualization (NFV) and software defined networking (SDN) are two promising technologies to enable 5G and 6G services and achieve cost reduction, network scalability, and deployment flexibility. However, migration to full SDN/NFV networks in order to serve these services is a time consuming process and costly for mobile operators. This paper focuses on energy efficiency during the transition of mobile core networks (MCN) to full SDN/NFV networks, and explores how energy efficiency can be addressed during such migration. We propose a general system model containing a combination of legacy nodes and links, in addition to newly introduced NFV and SDN nodes. We refer to this system model as partial SDN and hybrid NFV MCN which can cover different modes of SDN and NFV implementations. Based on this framework, we formulate energy efficiency by considering joint routing and function placement in the network. Since this problem belongs to the class of non-linear integer programming problems, to solve it efficiently, we present a modified Viterbi algorithm (MVA) based on multi-stage graph modeling and a modified Dijkstras algorithm. We simulate this algorithm for a number of network scenarios with different fractions of NFV and SDN nodes, and evaluate how much energy can be saved through such transition. Simulation results confirm the expected performance of the algorithm which saves up to 70% energy compared to network where all nodes are always on. Interestingly, the amount of energy saved by the proposed algorithm in the case of hybrid NFV and partial SDN networks can reach up to 60-90% of the saved energy in full NFV/SDN networks.

قيم البحث

اقرأ أيضاً

Communication networks are undergoing their next evolutionary step towards 5G. The 5G networks are envisioned to provide a flexible, scalable, agile and programmable network platform over which different services with varying requirements can be depl oyed and managed within strict performance bounds. In order to address these challenges a paradigm shift is taking place in the technologies that drive the networks, and thus their architecture. Innovative concepts and techniques are being developed to power the next generation mobile networks. At the heart of this development lie Network Function Virtualization and Software Defined Networking technologies, which are now recognized as being two of the key technology enablers for realizing 5G networks, and which have introduced a major change in the way network services are deployed and operated. For interested readers that are new to the field of SDN and NFV this paper provides an overview of both these technologies with reference to the 5G networks. Most importantly it describes how the two technologies complement each other and how they are expected to drive the networks of near future.
In Software-Defined Networking (SDN)-enabled cloud data centers, live migration is a key approach used for the reallocation of Virtual Machines (VMs) in cloud services and Virtual Network Functions (VNFs) in Service Function Chaining (SFC). Using liv e migration methods, cloud providers can address their dynamic resource management and fault tolerance objectives without interrupting the service of users. However, in cloud data centers, performing multiple live migrations in arbitrary order can lead to service degradation. Therefore, efficient migration planning is essential to reduce the impact of live migration overheads. In addition, to prevent Quality of Service (QoS) degradations and Service Level Agreement (SLA) violations, it is necessary to set priorities for different live migration requests with various urgency. In this paper, we propose SLAMIG, a set of algorithms that composes the deadline-aware multiple migration grouping algorithm and on-line migration scheduling to determine the sequence of VM/VNF migrations. The experimental results show that our approach with reasonable algorithm runtime can efficiently reduce the number of deadline misses and has a good migration performance compared with the one-by-one scheduling and two state-of-the-art algorithms in terms of total migration time, average execution time, downtime, and transferred data. We also evaluate and analyze the impact of multiple migration planning and scheduling on QoS and energy consumption.
Network Functions Virtualization (NFV) allows implantation of network functions to be independent of dedicated hardware devices. Any series of services can be represented by a service function chain which contains a set of virtualized network functio ns in a specified order. From the perspective of network performance optimization, the challenges of deploying service chain in network is twofold: 1) the location of placing virtualized network functions and resources allocation scheme; and 2) routing policy for traffic flow among different instances of network function. This article introduces service function chain related optimization problems, summarizes the optimization motivation and mainstream algorithm of virtualized network functions deployment and traffic routing. We hope it can help readers to learn about the current research progress and make further innovation in this field.
In this paper, we provide a comprehensive review and updated solutions related to 5G network slicing using SDN and NFV. Firstly, we present 5G service quality and business requirements followed by a description of 5G network softwarization and slicin g paradigms including essential concepts, history and different use cases. Secondly, we provide a tutorial of 5G network slicing technology enablers including SDN, NFV, MEC, cloud/Fog computing, network hypervisors, virtual machines & containers. Thidly, we comprehensively survey different industrial initiatives and projects that are pushing forward the adoption of SDN and NFV in accelerating 5G network slicing. A comparison of various 5G architectural approaches in terms of practical implementations, technology adoptions and deployment strategies is presented. Moreover, we provide a discussion on various open source orchestrators and proof of concepts representing industrial contribution. The work also investigates the standardization efforts in 5G networks regarding network slicing and softwarization. Additionally, the article presents the management and orchestration of network slices in a single domain followed by a comprehensive survey of management and orchestration approaches in 5G network slicing across multiple domains while supporting multiple tenants. Furthermore, we highlight the future challenges and research directions regarding network softwarization and slicing using SDN and NFV in 5G networks.
128 - Na Deng , Ming Zhao , Sihai Zhang 2012
In this letter, we consider a joint macro-relay network with densely deployed relay stations (RSs) and dynamically varied traffic load measured by the number of users. An energy-efficient strategy is proposed by intelligently adjusting the RS working modes (active or sleeping) according to the traffic variation. Explicit expressions related to the network energy efficiency are derived based on stochastic geometry theory. Simulation results demonstrate that the derived analytic results are reasonable and the proposed strategy can significantly improve the network energy efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا