ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics

124   0   0.0 ( 0 )
 نشر من قبل Huazhong Tang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper develops entropy stable (ES) adaptive moving mesh schemes for the 2D and 3D special relativistic hydrodynamic (RHD) equations. They are built on the ES finite volume approximation of the RHD equations in curvilinear coordinates, the discrete geometric conservation laws, and the mesh adaptation implemented by iteratively solving the Euler-Lagrange equations of the mesh adaption functional in the computational domain with suitably chosen monitor functions. First, a sufficient condition is proved for the two-point entropy conservative (EC) flux, by mimicking the derivation of the continuous entropy identity in curvilinear coordinates and using the discrete geometric conservation laws given by the conservative metrics method. Based on such sufficient condition, the EC fluxes for the RHD equations in curvilinear coordinates are derived and the second-order accurate semi-discrete EC schemes are developed to satisfy the entropy identity for the given convex entropy pair. Next, the semi-discrete ES schemes satisfying the entropy inequality are proposed by adding a suitable dissipation term to the EC scheme and utilizing linear reconstruction with the minmod limiter in the scaled entropy variables in order to suppress the numerical oscillations of the above EC scheme. Then, the semi-discrete ES schemes are integrated in time by using the second-order strong stability preserving explicit Runge-Kutta schemes. Finally, several numerical results show that our 2D and 3D ES adaptive moving mesh schemes effectively capture the localized structures, such as sharp transitions or discontinuities, and are more efficient than their counterparts on uniform mesh.



قيم البحث

اقرأ أيضاً

This paper develops high-order accurate entropy stable (ES) adaptive moving mesh finite difference schemes for the two- and three-dimensional special relativistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD) equations, which is the high-order ac curate extension of [J.M. Duan and H.Z. Tang, Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics, J. Comput. Phys., 426(2021), 109949]. The key point is the derivation of the higher-order accurate entropy conservative (EC) and ES finite difference schemes in the curvilinear coordinates by carefully dealing with the discretization of the temporal and spatial metrics and the Jacobian of the coordinate transformation and constructing the high-order EC and ES fluxes with the discrete metrics. The spatial derivatives in the source terms of the symmetrizable RMHD equations and the geometric conservation laws are discretized by using the linear combinations of the corresponding second-order case to obtain high-order accuracy. Based on the proposed high-order accurate EC schemes and the high-order accurate dissipation terms built on the WENO reconstruction, the high-order accurate ES schemes are obtained for the RHD and RMHD equations in the curvilinear coordinates. The mesh iteration redistribution or adaptive moving mesh strategy is built on the minimization of the mesh adaption functional. Several numerical tests are conducted to validate the shock-capturing ability and high efficiency of our high-order accurate ES adaptive moving mesh methods on the parallel computer system with the MPI communication. The numerical results show that the high-order accurate ES adaptive moving mesh schemes outperform both their counterparts on the uniform mesh and the second-order ES adaptive moving mesh schemes.
This paper develops the high-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamic equations. The schemes are built on the entropy conservative flux and the weighted essentially non-osc illatory (WENO) technique as well as explicit Runge-Kutta time discretization. The key is to technically construct the affordable entropy conservative flux of the semi-discrete second-order accurate entropy conservative schemes satisfying the semi-discrete entropy equality for the found convex entropy pair. As soon as the entropy conservative flux is derived, the dissipation term can be added to give the semi-discrete entropy stable schemes satisfying the semi-discrete entropy inequality with the given convex entropy function. The WENO reconstruction for the scaled entropy variables and the high-order explicit Runge-Kutta time discretization are implemented to obtain the fully-discrete high-order schemes. Several numerical tests are conducted to validate the accuracy and the ability to capture discontinuities of our entropy stable schemes.
This paper studies high-order accurate entropy stable nodal discontinuous Galerkin (DG) schemes for the ideal special relativistic magnetohydrodynamics (RMHD). It is built on the modified RMHD equations with a particular source term, which is analogo us to the Powells eight-wave formulation and can be symmetrized so that an entropy pair is obtained. We design an affordable fully consistent two-point entropy conservative flux, which is not only consistent with the physical flux, but also maintains the zero parallel magnetic component, and then construct high-order accurate semi-discrete entropy stable DG schemes based on the quadrature rules and the entropy conservative and stable fluxes. They satisfy the semidiscrete entropy inequality for the given entropy pair and are integrated in time by using the high-order explicit strong stability preserving Runge-Kutta schemes to get further the fully-discrete nodal DG schemes. Extensive numerical tests are conducted to validate the accuracy and the ability to capture discontinuities of our schemes. Moreover, our entropy conservative flux is compared to an existing flux through some numerical tests. The results show that the zero parallel magnetic component in the numerical flux can help to decrease the error in the parallel magnetic component in one-dimensional tests, but two entropy conservative fluxes give similar results since the error in the magnetic field divergence seems dominated in the two-dimensional tests.
This paper extends the second-order accurate BGK finite volume schemes for the ultra-relativistic flow simulations [5] to the 1D and 2D special relativistic hydrodynamics with the Synge equation of state. It is shown that such 2D schemes are very tim e-consuming due to the moment integrals (triple integrals) so that they are no longer practical. In view of this, the simplified BGK (sBGK) schemes are presented by removing some terms in the approximate nonequilibrium distribution at the cell interface for the BGK scheme without loss of accuracy. They are practical because the moment integrals of the approximate distribution can be reduced to the single integrals by some coordinate transformations. The relations between the left and right states of the shock wave, rarefaction wave, and contact discontinuity are also discussed, so that the exact solution of the 1D Riemann problem could be derived and used for the numerical comparisons. Several numerical experiments are conducted to demonstrate that the proposed gas-kinetic schemes are accurate and stable. A comparison of the sBGK schemes with the BGK scheme in one dimension shows that the former performs almost the same as the latter in terms of the accuracy and resolution, but is much more efficiency.
We present a new special relativistic hydrodynamics (SRHD) code capable of handling coexisting ultra-relativistically hot and non-relativistically cold gases. We achieve this by designing a new algorithm for conversion between primitive and conserved variables in the SRHD solver, which incorporates a realistic ideal-gas equation of state covering both the relativistic and non-relativistic regimes. The code can handle problems involving a Lorentz factor as high as $10^6$ and optimally avoid the catastrophic cancellation. In addition, we have integrated this new SRHD solver into the code GAMER (https://github.com/gamer-project/gamer) to support adaptive mesh refinement and hybrid OpenMP/MPI/GPU parallelization. It achieves a peak performance of $7times 10^{7}$ cell updates per second on a single Tesla P100 GPU and scales well to 2048 GPUs. We apply this code to two interesting astrophysical applications: (a) an asymmetric explosion source on the relativistic blast wave and (b) the flow acceleration and limb-brightening of relativistic jets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا