ﻻ يوجد ملخص باللغة العربية
This paper is a continuation of the paper cite{W} by the third author, which studied quantum walks with special long-range perturbations of the coin operator. In this paper, we consider general long-range perturbations of the coin operator and prove the non-existence of a singular continuous spectrum and embedded eigenvalues. The proof relies on the construction of generalized eigenfunctions (Jost solutions) which was studied in the short-range case in cite{MSSSSdis}.
We investigate the spectrum of Schrodinger operators on finite regular metric trees through a relation to orthogonal polynomials that provides a graphical perspective. As the Robin vertex parameter tends to $-infty$, a narrow cluster of finitely many
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-de
The dimensionality of the internal coin space of discrete-time quantum walks has a strong impact on the complexity and richness of the dynamics of quantum walkers. While two-dimensional coin operators are sufficient to define a certain range of dynam
In this note, we consider a physical system given by a two-dimensional quantum walk in an external magnetic field. In this setup, we show that both the topological structure as well as its type depend sensitively on the value of the magnetic flux $Ph
We study one-dimensional quantum walk with four internal degrees of freedom resulted from two entangled qubits. We will demonstrate that the entanglement between the qubits and its corresponding coin operator enable one to steer the walkers state fro