ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of singular continuous spectra and embedded eigenvalues for one dimensional quantum walks with general long range coins

54   0   0.0 ( 0 )
 نشر من قبل Kazuyuki Wada
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is a continuation of the paper cite{W} by the third author, which studied quantum walks with special long-range perturbations of the coin operator. In this paper, we consider general long-range perturbations of the coin operator and prove the non-existence of a singular continuous spectrum and embedded eigenvalues. The proof relies on the construction of generalized eigenfunctions (Jost solutions) which was studied in the short-range case in cite{MSSSSdis}.



قيم البحث

اقرأ أيضاً

We investigate the spectrum of Schrodinger operators on finite regular metric trees through a relation to orthogonal polynomials that provides a graphical perspective. As the Robin vertex parameter tends to $-infty$, a narrow cluster of finitely many eigenvalues tends to $-infty$, while the eigenvalues above the cluster remain bounded from below. Certain rogue eigenvalues break away from this cluster and tend even faster toward $-infty$. The spectrum can be visualized as the intersection points of two objects in the plane--a spiral curve depending on the Schrodinger potential, and a set of curves depending on the branching factor, the diameter of the tree, and the Robin parameter.
76 - Chusei Kiumi , Kei Saito 2020
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-de fect and two-phase QWs, which have been intensively researched. Localization is one of the most characteristic properties of QWs, and various types of two-phase QWs with one defect exhibit localization. Moreover, the existence of eigenvalues is deeply related to localization. In this paper, we obtain a necessary and sufficient condition for the existence of eigenvalues. Our analytical methods are mainly based on the transfer matrix, a useful tool to generate the generalized eigenfunctions. Furthermore, we explicitly derive eigenvalues for some classes of two-phase QWs with one defect, and illustrate the range of eigenvalues on unit circles with figures. Our results include some results in previous studies, e.g. Endo et al. (2020).
The dimensionality of the internal coin space of discrete-time quantum walks has a strong impact on the complexity and richness of the dynamics of quantum walkers. While two-dimensional coin operators are sufficient to define a certain range of dynam ics on complex graphs, higher dimensional coins are necessary to unleash the full potential of discrete-time quantum walks. In this work we present an experimental realization of a discrete-time quantum walk on a line graph that, instead of two-dimensional, exhibits a four-dimensional coin space. Making use of the extra degree of freedom we observe multiple ballistic propagation speeds specific to higher dimensional coin operators. By implementing a scalable technique, we demonstrate quantum walks on circles of various sizes, as well as on an example of a Husimi cactus graph. The quantum walks are realized via time-multiplexing in a Michelson interferometer loop architecture, employing as the coin degrees of freedom the polarization and the traveling direction of the pulses in the loop. Our theoretical analysis shows that the platform supports implementations of quantum walks with arbitrary $4 times 4$ unitary coin operations, and usual quantum walks on a line with various periodic and twisted boundary conditions.
101 - C. Cedzich , J. Fillman , T. Geib 2019
In this note, we consider a physical system given by a two-dimensional quantum walk in an external magnetic field. In this setup, we show that both the topological structure as well as its type depend sensitively on the value of the magnetic flux $Ph i$: while for $Phi/(2{pi})$ rational the spectrum is known to consist of bands, we show that for $Phi/(2{pi})$ irrational the spectrum is a zero-measure Cantor set and the spectral measures have no pure point part.
We study one-dimensional quantum walk with four internal degrees of freedom resulted from two entangled qubits. We will demonstrate that the entanglement between the qubits and its corresponding coin operator enable one to steer the walkers state fro m a classical to standard quantum-walk behavior, and a novel one. Additionally, we report on self-trapped behavior and perfect transfer with highest velocity for the walker. We also show that symmetry of probability density distribution, the most probable place to find the walker and evolution of the entropy are subject to initial entanglement between the qubits. In fact, we confirm that if the two qubits are separable (zero entanglement), entropy becomes minimum whereas its maximization happens if the two qubits are initially maximally entangled. We will make contrast between cases where the entangled qubits are affected by coin operator identically or else, and show considerably different deviation in walkers behavior and its properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا