ﻻ يوجد ملخص باللغة العربية
Brain signals could be used to control devices to assist individuals with disabilities. Signals such as electroencephalograms are complicated and hard to interpret. A set of signals are collected and should be classified to identify the intention of the subject. Different approaches have tried to reduce the number of channels before sending them to a classifier. We are proposing a deep learning-based method for selecting an informative subset of channels that produce high classification accuracy. The proposed network could be trained for an individual subject for the selection of an appropriate set of channels. Reduction of the number of channels could reduce the complexity of brain-computer-interface devices. Our method could find a subset of channels. The accuracy of our approach is comparable with a model trained on all channels. Hence, our models temporal and power costs are low, while its accuracy is kept high.
Convolutional neural networks (CNNs) have become a powerful technique to decode EEG and have become the benchmark for motor imagery EEG Brain-Computer-Interface (BCI) decoding. However, it is still challenging to train CNNs on multiple subjects EEG w
The Brain-Computer Interface system is a profoundly developing area of experimentation for Motor activities which plays vital role in decoding cognitive activities. Classification of Cognitive-Motor Imagery activities from EEG signals is a critical t
Band selection refers to the process of choosing the most relevant bands in a hyperspectral image. By selecting a limited number of optimal bands, we aim at speeding up model training, improving accuracy, or both. It reduces redundancy among spectral
We present an automated method to track and identify neurons in C. elegans, called fast Deep Learning Correspondence or fDLC, based on the transformer network architecture. The model is trained once on empirically derived synthetic data and then pred
Purpose: Localizing the sources of electrical activity from electroencephalographic (EEG) data has gained considerable attention over the last few years. In this paper, we propose an innovative source localization method for EEG, based on Sparse Baye