ﻻ يوجد ملخص باللغة العربية
When a fs duration and hundreds of kA peak current electron beam traverses the vacuum and high-density plasma interface a new process, that we call relativistic transition radiation (R-TR) generates an intense $sim100$ as pulse containing $sim$ TW power of coherent VUV radiation accompanied by several smaller fs duration satellite pulses. This pulse inherits the radial polarization of the incident beam field and has a ring intensity distribution. This R-TR is emitted when the beam density is comparable to the plasma density and the spot size much larger than the plasma skin depth. Physically, it arises from the return current or backward relativistic motion of electrons starting just inside the plasma that Doppler up-shifts the emitted photons. The number of R-TR pulses is determined by the number of groups of plasma electrons that originate at different depths within the first plasma wake period and emit coherently before phase mixing.
Laser-plasma electron accelerators can be used to produce high-intensity X-rays, as electrons accelerated in wakefields emit radiation due to betatron oscillations.Such X-ray sources inherit the features of the electron beam; sub-femtosecond electron
Relativistic surface high harmonics have been considered a unique source for the generation of intense isolated attosecond pulses in the extreme ultra-violet (XUV) and X-ray spectral range. However, its experimental realization is still a challenging
A method of generating spin polarized proton beams from a gas jet by using a multi-petawatt laser is put forward. With currently available techniques of producing pre-polarized monatomic gases from photodissociated hydrogen halide molecules and petaw
We propose a method to generate isolated relativistic terahertz (THz) pulses using a high-power laser irradiating a mirco-plasma-waveguide (MPW). When the laser pulse enters the MPW, high-charge electron bunches are produced and accelerated to ~ 100
The microscopic dynamics of laser-driven coherent synchrotron emission transmitted through thin foils are investigated using particle-in-cell simulations. For normal incidence interactions, we identify the formation of two distinct electron nanobunch