ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the steady MHD equations with inhomogeneous boundary conditions for the velocity and the tangential component of the magnetic field. Using a new construction of the magnetic lifting, we obtain existence of weak solutions under sharp assumption on boundary data for the magnetic field.
We examine initial-boundary value problems for diffusion equations with distributed order time-fractional derivatives. We prove existence and uniqueness results for the weak solution to these systems, together with its continuous dependency on initia
In this paper, we are concerned with the magnetic effect on the Sobolev solvability of boundary layer equations for the 2D incompressible MHD system without resistivity. The MHD boundary layer is described by the Prandtl type equations derived from t
We study the Schrodinger equation which comes from the paraxial approximation of the Helmholtz equation in the case where the direction of propagation is tilted with respect to the boundary of the domain. This model has been proposed in (Doumic, Gols
In this paper, we prove the a priori estimates in Sobolev spaces for the free-boundary compressible inviscid magnetohydrodynamics equations with magnetic diffusion under the Rayleigh-Taylor physical sign condition. Our energy estimates are uniform in
An initial boundary value problem for compressible Magnetohydrodynamics (MHD) is considered on an exterior domain (with the first Betti number vanishes) in $R^3$ in this paper. The global existence of smooth solutions near a given constant state for