ترغب بنشر مسار تعليمي؟ اضغط هنا

Solvability of an inhomogeneous boundary value problem for steady MHD equations

213   0   0.0 ( 0 )
 نشر من قبل Zhibing Zhang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the steady MHD equations with inhomogeneous boundary conditions for the velocity and the tangential component of the magnetic field. Using a new construction of the magnetic lifting, we obtain existence of weak solutions under sharp assumption on boundary data for the magnetic field.



قيم البحث

اقرأ أيضاً

We examine initial-boundary value problems for diffusion equations with distributed order time-fractional derivatives. We prove existence and uniqueness results for the weak solution to these systems, together with its continuous dependency on initia l value and source term. Moreover, under suitable assumption on the source term, we establish that the solution is analytic in time.
In this paper, we are concerned with the magnetic effect on the Sobolev solvability of boundary layer equations for the 2D incompressible MHD system without resistivity. The MHD boundary layer is described by the Prandtl type equations derived from t he incompressible viscous MHD system without resistivity under the no-slip boundary condition on the velocity. Assuming that the initial tangential magnetic field does not degenerate, a local-in-time well-posedness in Sobolev spaces is proved without the monotonicity condition on the velocity field. Moreover, we show that if the tangential magnetic field shear layer is degenerate at one point, then the linearized MHD boundary layer system around the shear layer profile is ill-posed in the Sobolev settings provided that the initial velocity shear flow is non-degenerately critical at the same point.
We study the Schrodinger equation which comes from the paraxial approximation of the Helmholtz equation in the case where the direction of propagation is tilted with respect to the boundary of the domain. This model has been proposed in (Doumic, Gols e, Sentis, CRAS, 2003). Our primary interest here is in the boundary conditions successively in a half-plane, then in a quadrant of R2. The half-plane problem has been used in (Doumic, Duboc, Golse, Sentis, JCP, to appear) to build a numerical method, which has been introduced in the HERA plateform of CEA.
101 - Junyan Zhang 2019
In this paper, we prove the a priori estimates in Sobolev spaces for the free-boundary compressible inviscid magnetohydrodynamics equations with magnetic diffusion under the Rayleigh-Taylor physical sign condition. Our energy estimates are uniform in the sound speed. As a result, we can prove the convergence of solutions of the free-boundary compressible resistive MHD equations to the solution of the free-boundary incompressible resistive MHD equations, i.e., the incompressible limit. The key observation is that the magnetic diffusion together with elliptic estimates directly controls the Lorentz force, magnetic field and pressure wave simultaneously.
88 - Hairong Liu , Tao Luo , Hua Zhong 2021
An initial boundary value problem for compressible Magnetohydrodynamics (MHD) is considered on an exterior domain (with the first Betti number vanishes) in $R^3$ in this paper. The global existence of smooth solutions near a given constant state for compressible MHD with the boundary conditions of Navier-slip for the velocity filed and perfect conduction for the magnetic field is established. Moreover the explicit decay rate is given. In particular, the results obtained in this paper also imply the global existence of classical solutions for the full compressible Navier-Stokes equations with Navier-slip boundary conditions on exterior domains in three dimensions, which is not available in literature, to the best of knowledge of the authors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا