ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden Photon Dark Matter Interacting via Axion-like Particles

78   0   0.0 ( 0 )
 نشر من قبل Ariel Arza
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a scenario where the dark matter of the Universe is made from very light hidden photons transforming under a $Z_{2}$-symmetry. In contrast to the usual situation, kinetic mixing is forbidden by the symmetry and the dark photon interacts with the Standard Model photon only via an axion-like particle acting as a messenger. Focusing on signatures involving the ordinary photon, our survey of the phenomenology includes limits from cosmological stability, CMB distortions, astrophysical energy loss, light-shining-through-walls experiments, helioscopes and solar X-ray observations.

قيم البحث

اقرأ أيضاً

The QCD axion or axion-like particles are candidates of dark matter of the universe. On the other hand, axion-like excitations exist in certain condensed matter systems, which implies that there can be interactions of dark matter particles with conde nsed matter axions. We discuss the relationship between the condensed matter axion and a collective spin-wave excitation in an anti-ferromagnetic insulator at the quantum level. The conversion rate of the light dark matter, such as the elementary particle axion or hidden photon, into the condensed matter axion is estimated for the discovery of the dark matter signals.
We present an interesting Higgs portal model where an axion-like particle (ALP) couples to the Standard Model sector only via the Higgs field. The ALP becomes stable due to CP invariance and turns out to be a natural candidate for freeze-in dark matt er because its properties are controlled by the perturbative ALP shift symmetry. The portal coupling can be generated non-perturbatively by a hidden confining gauge sector, or radiatively by new leptons charged under the ALP shift symmetry. Such UV completions generally involve a CP violating phase, which makes the ALP unstable and decay through mixing with the Higgs boson, but can be sufficiently suppressed in a natural way by invoking additional symmetries.
Many existing and proposed experiments targeting QCD axion dark matter (DM) can also search for a broad class of axion-like particles (ALPs). We analyze the experimental sensitivities to electromagnetically-coupled ALP DM in different cosmological sc enarios with the relic abundance set by the misalignment mechanism. We obtain benchmark DM targets for the standard thermal cosmology, a pre-nucleosynthesis period of early matter domination, and a period of kination. These targets are theoretically simple and assume $mathcal{O}(1)$ misalignment angles, avoiding fine-tuning of the initial conditions. We find that some experiments will have sensitivity to these ALP DM targets before they are sensitive to the QCD axion, and others can potentially reach interesting targets below the QCD band. The ALP DM abundance also depends on the origin of the ALP mass. Temperature-dependent masses that are generated by strong dynamics (as for the QCD axion) correspond to DM candidates with smaller decay constants, resulting in even better detection prospects.
A well-motivated class of dark matter candidates, including axions and dark photons, takes the form of coherent oscillations of a light bosonic field. If the dark matter couples to Standard Model states, it may be possible to detect it via absorption s in a laboratory target. Current experiments of this kind include cavity-based resonators that convert bosonic dark matter to electromagnetic fields, operating at microwave frequencies. We propose a new class of detectors at higher frequencies, from the infrared through the ultraviolet, based on the dielectric haloscope concept. In periodic photonic materials, bosonic dark matter can efficiently convert to detectable single photons. With feasible experimental techniques, these detectors can probe significant new parameter space for axion and dark photon dark matter in the 0.1-10 eV mass range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا