ﻻ يوجد ملخص باللغة العربية
We establish a way to handle main collective fluctuations in correlated quantum systems based on a Fluctuation Local Field concept. This technique goes beyond standard mean-field approaches, such as Hartree-Fock and dynamical mean-field theories (DMFT), as it includes a fluctuating classical field that acts on the leading order parameter of the system. Effective model parameters of this new theory are determined from the variational principle, which allows to resolve the Fierz ambiguity in decoupling of the local interaction term. In the saddle-point approximation for the fluctuating field our method reproduces the mean-field result. The exact numerical integration over this field allows to consider nonlinear fluctuations of the global order parameter of the system while local correlations can be accounted by solving the DMFT impurity problem. We apply our method to the magnetic susceptibility of finite Hubbard systems at half-filling and demonstrate that the introduced technique leads to a superior improvement of results with respect to parental mean-field approaches without significant numerical complications. We show that the Fluctuation Local Field method can be used in a very broad range of temperatures substantially below the Neel temperature of DMFT, which remains a major challenge for all existing theoretical approaches.
The impact of leading collective electronic fluctuations on a free energy of a prototype 1D model for molecular systems is considered within the recently developed Fluctuating Local Field (FLF) approach. The FLF method is a non-perturbative extension
When the transition temperature of a continuous phase transition is tuned to absolute zero, new ordered phases and physical behaviour emerge in the vicinity of the resulting quantum critical point. Sr3Ru2O7 can be tuned through quantum criticality wi
To explore correlated electrons in the presence of local and non-local disorder, the Blackman-Esterling-Berk method for averaging over off-diagonal disorder is implemented into dynamical mean-field theory using tensor notation. The impurity model com
We present the continued fraction method (CFM) as a new microscopic approximation to the spectral density of the Hubbard model in the correlated metal phase away from half filling. The quantity expanded as a continued fraction is the single particle
Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7, with the ground state selection proceeding by order by disorder induced throug