ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact Hypergroups from Discrete Subfactors

141   0   0.0 ( 0 )
 نشر من قبل Luca Giorgetti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Conformal inclusions of chiral conformal field theories, or more generally inclusions of quantum field theories, are described in the von Neumann algebraic setting by nets of subfactors, possibly with infinite Jones index if one takes non-rational theories into account. With this situation in mind, we study in a purely subfactor theoretical context a certain class of braided discrete subfactors with an additional commutativity constraint, that we call locality, and which corresponds to the commutation relations between field operators at space-like distance in quantum field theory. Examples of subfactors of this type come from taking a minimal action of a compact group on a factor and considering the fixed point subalgebra. We show that to every irreducible local discrete subfactor $mathcal{N}subsetmathcal{M}$ of type ${I!I!I}$ there is an associated canonical compact hypergroup (an invariant for the subfactor) which acts on $mathcal{M}$ by unital completely positive (ucp) maps and which gives $mathcal{N}$ as fixed points. To show this, we establish a duality pairing between the set of all $mathcal{N}$-bimodular ucp maps on $mathcal{M}$ and a certain commutative unital $C^*$-algebra, whose spectrum we identify with the compact hypergroup. If the subfactor has depth 2, the compact hypergroup turns out to be a compact group. This rules out the occurrence of compact emph{quantum} groups acting as global gauge symmetries in local conformal field theory.



قيم البحث

اقرأ أيضاً

Discrete subfactors include a particular class of infinite index subfactors and all finite index ones. A discrete subfactor is called local when it is braided and it fulfills a commutativity condition motivated by the study of inclusion of Quantum Fi eld Theories in the algebraic Haag-Kastler setting. In [BDG21], we proved that every irreducible local discrete subfactor arises as the fixed point subfactor under the action of a canonical compact hypergroup. In this work, we prove a Galois correspondence between intermediate von Neumann algebras and closed subhypergroups, and we study the subfactor theoretical Fourier transform in this context. Along the way, we extend the main results concerning $alpha$-induction and $sigma$-restriction for braided subfactors previously known in the finite index case.
125 - K.-H. Rehren 1999
A theorem is derived which (i) provides a new class of subfactors which may be interpreted as generalized asymptotic subfactors, and which (ii) ensures the existence of two-dimensional local quantum field theories associated with certain modular invariant matrices.
Weighted group algebras have been studied extensively in Abstract Harmonic Analysis where complete characterizations have been found for some important properties of weighted group algebras, namely amenability and Arens regularity. One of the general izations of weighted group algebras is weighted hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study Arens regularity and isomorphism to operator algebras for them. We also examine our results on three classes of discrete weighted hypergroups constructed by conjugacy classes of FC groups, the dual space of compact groups, and hypergroup structure defined by orthogonal polynomials. We observe some unexpected examples regarding Arens regularity and operator isomorphisms of weighted hypergroup algebras.
62 - K.-H. Rehren 1999
Canonical tensor product subfactors (CTPSs) describe, among other things, the embedding of chiral observables in two-dimensional conformal quantum field theories. A new class of CTPSs is constructed some of which are associated with certain modular i nvariants, thereby establishing the expected existence of the corresponding two-dimensional theories.
106 - Hans Wenzl 2011
We construct analogs of the embedding of orthogonal and symplectic groups into unitary groups in the context of fusion categories. At least some of the resulting module categories also appear in boundary conformal field theory. We determine when thes e categories are unitarizable, and explicitly calculate the index and principal graph of the resulting subfactors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا