ﻻ يوجد ملخص باللغة العربية
Multilamellar wall vesicles (MLWV) are an interesting class of polyelectrolyte-surfactant complexes (PESCs) for wide applications ranging from house-care to biomedical products. If MLWV are generally obtained by a polyelectrolyte-driven vesicle agglutination under pseudo-equilibrium conditions, the resulting phase is often a mixture of more than one structure. In this work, we show that MLWV can be massively and reproductively prepared from a recently developed method involving a pH-stimulated phase transition from a complex coacervate phase (Co). We employ a biobased pH-sensitive microbial glucolipid biosurfactant in the presence of a natural, or synthetic, polyamine (chitosan, poly-L-Lysine, polyethylene imine, polyallylamine). In situ small angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) show a systematic isostructural and isodimensional transition from the Co to the MLWV phase, while optical microscopy under polarized light experiments and cryo-TEM reveal a massive, virtually quantitative, presence of MLWV. Finally, the multilamellar wall structure is not perturbed by filtration and sonication, two typical methods employed to control size distribution in vesicles. In summary, this work highlights a new, robust, non-equilibrium phase-change method to develop biobased multilamellar wall vesicles, promising soft colloids with applications in the field of personal care, cosmetics and pharmaceutics among many others.
We theoretically study the polarizability and the interactions of neutral complexes consisting of a semi-flexible polyelectrolyte adsorbed onto an oppositely charged spherical colloid. In the systems we studied, the bending energy of the chain is sma
Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the
In this study we use non-equilibrium thermodynamics to systematically derive a phase-field model of a polyelectrolyte gel coupled to a hydrodynamic model for a salt solution surrounding the gel. The governing equations for the gel account for the fre
The phase behavior of membrane proteins stems from a complex synergy with the amphiphilic molecules required for their solubilization. We show that ionization of a pH-sensitive surfactant, LDAO, bound to a bacterial photosynthetic protein, the Reacti
Within the framework of the Helfrich elastic theory of membranes and of differential geometry we study the possible instabilities of spherical vesicles towards double bubbles. We find that not only temperature, but also magnetic fields can induce top