ترغب بنشر مسار تعليمي؟ اضغط هنا

The TR-BDF2 method for second order problems in structural mechanics

62   0   0.0 ( 0 )
 نشر من قبل Luca Bonaventura
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The application of the TR-BDF2 method to second order problems typical of structural mechanics and seismic engineering is discussed. A reformulation of this method is presented, that only requires the solution of algebraic systems of size equal to the number of displacement degrees of freedom. A linear analysis and numerical experiments on relevant benchmarks show that the TR-BDF2 method is superior in terms of accuracy and efficiency to the classical Newmark method and to its generalizations.



قيم البحث

اقرأ أيضاً

The locally modified finite element method, which is introduced in [Frei, Richter: SINUM 52(2014), p. 2315-2334] is a simple fitted finite element method that is able to resolve weak discontinuities in interface problems. The method is based on a fix ed structured coarse mesh, which is then refined into sub-elements to resolve an interior interface. In this work, we extend the locally modified finite element method to second order using an isoparametric approach in the interface elements. Thereby we need to take care that the resulting curved edges do not lead to degenerate sub-elements. We prove optimal a priori error estimates in the $L^2$-norm and in a modified energy norm, as well as a reduced convergence order of ${cal O}(h^{3/2})$ in the standard $H^1$-norm. Finally, we present numerical examples to substantiate the theoretical findings.
114 - Shi Jin , Lei Li , Yiqun Sun 2020
We investigate several important issues regarding the Random Batch Method (RBM) for second order interacting particle systems. We first show the uniform-in-time strong convergence for second order systems under suitable contraction conditions. Second ly, we propose the application of RBM for singular interaction kernels via kernel splitting strategy, and investigate numerically the application to molecular dynamics.
113 - Panchi Li , Lei Yang , Jin Lan 2021
Recent theoretical and experimental advances show that the inertia of magnetization emerges at sub-picoseconds and contributes to the ultrafast magnetization dynamics which cannot be captured intrinsically by the LLG equation. Therefore, as a general ization, the inertial Landau-Lifshitz-Gilbert (iLLG) equation is proposed to model the ultrafast magnetization dynamics. Mathematically, the LLG equation is a nonlinear system of parabolic type with (possible) degeneracy. However, the iLLG equation is a nonlinear system of mixed hyperbolic-parabolic type with degeneracy, and exhibits more complicated structures. It behaves like a hyperbolic system at the sub-picosecond scale while behaves like a parabolic system at larger timescales. Such hybrid behaviors impose additional difficulties on designing numerical methods for the iLLG equation. In this work, we propose a second-order semi-implicit scheme to solve the iLLG equation. The second temporal derivative of magnetization is approximated by the standard centered difference scheme and the first derivative is approximated by the midpoint scheme involving three time steps. The nonlinear terms are treated semi-implicitly using one-sided interpolation with the second-order accuracy. At each step, the unconditionally unique solvability of the unsymmetric linear system of equations in the proposed method is proved with a detailed discussion on the condition number. Numerically, the second-order accuracy in both time and space is verified. Using the proposed method, the inertial effect of ferromagnetics is observed in micromagnetics simulations at small timescales, in consistency with the hyperbolic property of the model at sub-picoseconds. For long time simulations, the results of the iLLG model are in nice agreements with those of the LLG model, in consistency with the parabolic feature of the iLLG model at larger timescales.
In this paper stability and error estimates for time discretizations of linear and semilinear parabolic equations by the two-step backward differentiation formula (BDF2) method with variable step-sizes are derived. An affirmative answer is provided t o the question: whether the upper bound of step-size ratios for the $l^infty(0,T;H)$-stability of the BDF2 method for linear and semilinear parabolic equations is identical with the upper bound for the zero-stability. The $l^infty(0,T;V)$-stability of the variable step-size BDF2 method is also established under more relaxed condition on the ratios of consecutive step-sizes. Based on these stability results, error estimates in several different norms are derived. To utilize the BDF method the trapezoidal method and the backward Euler scheme are employed to compute the starting value. For the latter choice, order reduction phenomenon of the constant step-size BDF2 method is observed theoretically and numerically in several norms. Numerical results also illustrate the effectiveness of the proposed method for linear and semilinear parabolic equations.
A mass-conservative Lagrange--Galerkin scheme of second order in time for convection-diffusion problems is presented, and convergence with optimal error estimates is proved in the framework of $L^2$-theory. The introduced scheme maintains the advanta ges of the Lagrange--Galerkin method, i.e., CFL-free robustness for convection-dominated problems and a symmetric and positive coefficient matrix resulting from the discretization. In addition, the scheme conserves the mass on the discrete level. Unconditional stability and error estimates of second order in time are proved by employing two new key lemmas on the truncation error of the material derivative in conservative form and on a discrete Gronwall inequality for multistep methods. The mass-conservation property is achieved by the Jacobian multiplication technique introduced by Rui and Tabata in 2010, and the accuracy of second order in time is obtained based on the idea of the multistep Galerkin method along characteristics originally introduced by Ewing and Russel in 1981. For the first time step, the mass-conservative scheme of first order in time by Rui and Tabata in 2010 is employed, which is efficient and does not cause any loss of convergence order in the $ell^infty(L^2)$- and $ell^2(H^1_0)$-norms. For the time increment $Delta t$, the mesh size $h$ and a conforming finite element space of polynomial degree $k$, the convergence order is of $O(Delta t^2 + h^k)$ in the $ell^infty(L^2)cap ell^2(H^1_0)$-norm and of $O(Delta t^2 + h^{k+1})$ in the $ell^infty(L^2)$-norm if the duality argument can be employed. Error estimates of $O(Delta t^{3/2}+h^k)$ in discre
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا