ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise and ergodic properties of Brownian motion in an optical tweezer: looking at the crossover between Wiener and Ornstein-Uhlenbeck processes

84   0   0.0 ( 0 )
 نشر من قبل Cyriaque Genet
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize throughout the spectral range of an optical trap the nature of the noise at play and the ergodic properties of the corresponding Brownian motion of an overdamped trapped single microsphere, comparing experimental, analytical and simulated data. We carefully analyze noise and ergodic properties $(i)$ using the Allan variance for characterizing the noise and $(ii)$ exploiting a test of ergodicity tailored for experiments done over finite times. We derive these two observables in the low-frequency Ornstein-Uhlenbeck trapped-diffusion regime and study analytically their evolution towards the high-frequency Wiener free-diffusion regime, in a very good agreement with simulated and experimental results. This leads to reveal noise and ergodic spectral signatures associated with the distinctive features of both regimes.



قيم البحث

اقرأ أيضاً

116 - S.C. Lim , Chai Hok Eab 2019
Tempered fractional Brownian motion is revisited from the viewpoint of reduced fractional Ornstein-Uhlenbeck process. Many of the basic properties of the tempered fractional Brownian motion can be shown to be direct consequences or modifications of t he properties of fractional Ornstein-Uhlenbeck process. Mixed tempered fractional Brownian motion is introduced and its properties are considered. Tempered fractional Brownian motion is generalised from single index to two indices. Finally, tempered multifractional Brownian motion and its properties are studied.
119 - Chai Hok Eab , S.C. Lim 2016
This paper studies Langevin equation with random damping due to multiplicative noise and its solution. Two types of multiplicative noise, namely the dichotomous noise and fractional Gaussian noise are considered. Their solutions are obtained explicit ly, with the expressions of the mean and covariance determined explicitly. Properties of the mean and covariance of the Ornstein-Uhlenbeck process with random damping, in particular the asymptotic behavior, are studied. The effect of the multiplicative noise on the stability property of the resulting processes is investigated.
In this paper, we will first give the numerical simulation of the sub-fractional Brownian motion through the relation of fractional Brownian motion instead of its representation of random walk. In order to verify the rationality of this simulation, w e propose a practical estimator associated with the LSE of the drift parameter of mixed sub-fractional Ornstein-Uhlenbeck process, and illustrate the asymptotical properties according to our method of simulation when the Hurst parameter $H>1/2$.
The Ornstein-Uhlenbeck process can be seen as a paradigm of a finite-variance and statistically stationary rough random walk. Furthermore, it is defined as the unique solution of a Markovian stochastic dynamics and shares the same local regularity as the one of the Brownian motion. Based on previous works, we propose to include in the framework of one of its generalization, the so-called fractional Ornstein-Uhlenbeck process, some Multifractal corrections, using a Gaussian Multiplicative Chaos. The aforementioned process, called a Multifractal fractional Ornstein-Uhlenbeck process, is a statistically stationary finite-variance process. Its underlying dynamics is non-Markovian, although non-anticipating and causal. The numerical scheme and theoretical approach are based on a regularization procedure, that gives a meaning to this dynamical evolution, which unique solution converges towards a well-behaved stochastic process.
483 - F. Le Vot , S. B. Yuste , 2019
We study normal diffusive and subdiffusive processes in a harmonic potential (Ornstein-Uhlenbeck process) on a uniformly growing/contracting domain. Our starting point is a recently derived fractional Fokker-Planck equation, which covers both the cas e of Brownian diffusion and the case of a subdiffusive Continuous-Time Random Walk (CTRW). We find a high sensitivity of the random walk properties to the details of the domain growth rate, which gives rise to a variety of regimes with extremely different behaviors. At the origin of this rich phenomenology is the fact that the walkers still move while they wait to jump, since they are dragged by the deterministic drift arising from the domain growth. Thus, the increasingly long waiting times associated with the ageing of the subdiffusive CTRW imply that, in the time interval between two consecutive jumps, the walkers might travel over much longer distances than in the normal diffusive case. This gives rise to seemingly counterintuitive effects. For example, on a static domain, both Brownian diffusion and subdiffusive CTRWs yield a stationary particle distribution with finite width when a harmonic potential is at play, thus indicating a confinement of the diffusing particle. However, for a sufficiently fast growing/contracting domain, this qualitative behavior breaks down, and differences between the Brownian case and the subdiffusive case are found. In the case of Brownian particles, a sufficiently fast exponential domain growth is needed to break the confinement induced by the harmonic force; in contrast, for subdiffusive particles such a breakdown may already take place for a sufficiently fast power-law domain growth. Our analytic and numerical results for both types of diffusion are fully confirmed by random walk simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا