ﻻ يوجد ملخص باللغة العربية
Let $G=(V,E)$ be an undirected graph. We call $D_t subseteq V$ as a total dominating set (TDS) of $G$ if each vertex $v in V$ has a dominator in $D$ other than itself. Here we consider the TDS problem in unit disk graphs, where the objective is to find a minimum cardinality total dominating set for an input graph. We prove that the TDS problem is NP-hard in unit disk graphs. Next, we propose an 8-factor approximation algorithm for the problem. The running time of the proposed approximation algorithm is $O(n log k)$, where $n$ is the number of vertices of the input graph and $k$ is output size. We also show that TDS problem admits a PTAS in unit disk graphs.
In this article, we study a variant of the minimum dominating set problem known as the minimum liars dominating set (MLDS) problem. We prove that the MLDS problem is NP-hard in unit disk graphs. Next, we show that the recent sub-quadratic time $frac{
In this article, we study a generalized version of the maximum independent set and minimum dominating set problems, namely, the maximum $d$-distance independent set problem and the minimum $d$-distance dominating set problem on unit disk graphs for a
Greedy routing has been studied successfully on Euclidean unit disk graphs, which we interpret as a special case of hyperbolic unit disk graphs. While sparse Euclidean unit disk graphs exhibit grid-like structure, we introduce strongly hyperbolic uni
For a graph $G=(V,E)$, we call a subset $ Ssubseteq V cup E$ a total mixed dominating set of $G$ if each element of $V cup E$ is either adjacent or incident to an element of $S$, and the total mixed domination number $gamma_{tm}(G)$ of $G$ is the min
A unit disk graph is the intersection graph of n congruent disks in the plane. Dominating sets in unit disk graphs are widely studied due to their application in wireless ad-hoc networks. Because the minimum dominating set problem for unit disk graph