ترغب بنشر مسار تعليمي؟ اضغط هنا

CVR-Net: A deep convolutional neural network for coronavirus recognition from chest radiography images

393   0   0.0 ( 0 )
 نشر من قبل Md. Kamrul Hasan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The novel Coronavirus Disease 2019 (COVID-19) is a global pandemic disease spreading rapidly around the world. A robust and automatic early recognition of COVID-19, via auxiliary computer-aided diagnostic tools, is essential for disease cure and control. The chest radiography images, such as Computed Tomography (CT) and X-ray, and deep Convolutional Neural Networks (CNNs), can be a significant and useful material for designing such tools. However, designing such an automated tool is challenging as a massive number of manually annotated datasets are not publicly available yet, which is the core requirement of supervised learning systems. In this article, we propose a robust CNN-based network, called CVR-Net (Coronavirus Recognition Network), for the automatic recognition of the coronavirus from CT or X-ray images. The proposed end-to-end CVR-Net is a multi-scale-multi-encoder ensemble model, where we have aggregated the outputs from two different encoders and their different scales to obtain the final prediction probability. We train and test the proposed CVR-Net on three different datasets, where the images have collected from different open-source repositories. We compare our proposed CVR-Net with state-of-the-art methods, which are trained and tested on the same datasets. We split three datasets into five different tasks, where each task has a different number of classes, to evaluate the multi-tasking CVR-Net. Our model achieves an overall F1-score & accuracy of 0.997 & 0.998; 0.963 & 0.964; 0.816 & 0.820; 0.961 & 0.961; and 0.780 & 0.780, respectively, for task-1 to task-5. As the CVR-Net provides promising results on the small datasets, it can be an auspicious computer-aided diagnostic tool for the diagnosis of coronavirus to assist the clinical practitioners and radiologists. Our source codes and model are publicly available at https://github.com/kamruleee51/CVR-Net.



قيم البحث

اقرأ أيضاً

The world is still struggling in controlling and containing the spread of the COVID-19 pandemic caused by the SARS-CoV-2 virus. The medical conditions associated with SARS-CoV-2 infections have resulted in a surge in the number of patients at clinics and hospitals, leading to a significantly increased strain on healthcare resources. As such, an important part of managing and handling patients with SARS-CoV-2 infections within the clinical workflow is severity assessment, which is often conducted with the use of chest x-ray (CXR) images. In this work, we introduce COVID-Net CXR-S, a convolutional neural network for predicting the airspace severity of a SARS-CoV-2 positive patient based on a CXR image of the patients chest. More specifically, we leveraged transfer learning to transfer representational knowledge gained from over 16,000 CXR images from a multinational cohort of over 15,000 patient cases into a custom network architecture for severity assessment. Experimental results with a multi-national patient cohort curated by the Radiological Society of North America (RSNA) RICORD initiative showed that the proposed COVID-Net CXR-S has potential to be a powerful tool for computer-aided severity assessment of CXR images of COVID-19 positive patients. Furthermore, radiologist validation on select cases by two board-certified radiologists with over 10 and 19 years of experience, respectively, showed consistency between radiologist interpretation and critical factors leveraged by COVID-Net CXR-S for severity assessment. While not a production-ready solution, the ultimate goal for the open source release of COVID-Net CXR-S is to act as a catalyst for clinical scientists, machine learning researchers, as well as citizen scientists to develop innovative new clinical decision support solutions for helping clinicians around the world manage the continuing pandemic.
The novel corona-virus disease (COVID-19) pandemic has caused a major outbreak in more than 200 countries around the world, leading to a severe impact on the health and life of many people globally. As of Aug 25th of 2020, more than 20 million people are infected, and more than 800,000 death are reported. Computed Tomography (CT) images can be used as a as an alternative to the time-consuming reverse transcription polymerase chain reaction (RT-PCR) test, to detect COVID-19. In this work we developed a deep learning framework to predict COVID-19 from CT images. We propose to use an attentional convolution network, which can focus on the infected areas of chest, enabling it to perform a more accurate prediction. We trained our model on a dataset of more than 2000 CT images, and report its performance in terms of various popular metrics, such as sensitivity, specificity, area under the curve, and also precision-recall curve, and achieve very promising results. We also provide a visualization of the attention maps of the model for several test images, and show that our model is attending to the infected regions as intended. In addition to developing a machine learning modeling framework, we also provide the manual annotation of the potentionally infected regions of chest, with the help of a board-certified radiologist, and make that publicly available for other researchers.
The health and socioeconomic difficulties caused by the COVID-19 pandemic continues to cause enormous tensions around the world. In particular, this extraordinary surge in the number of cases has put considerable strain on health care systems around the world. A critical step in the treatment and management of COVID-19 positive patients is severity assessment, which is challenging even for expert radiologists given the subtleties at different stages of lung disease severity. Motivated by this challenge, we introduce COVID-Net CT-S, a suite of deep convolutional neural networks for predicting lung disease severity due to COVID-19 infection. More specifically, a 3D residual architecture design is leveraged to learn volumetric visual indicators characterizing the degree of COVID-19 lung disease severity. Experimental results using the patient cohort collected by the China National Center for Bioinformation (CNCB) showed that the proposed COVID-Net CT-S networks, by leveraging volumetric features, can achieve significantly improved severity assessment performance when compared to traditional severity assessment networks that learn and leverage 2D visual features to characterize COVID-19 severity.
Semantic image segmentation is the process of labeling each pixel of an image with its corresponding class. An encoder-decoder based approach, like U-Net and its variants, is a popular strategy for solving medical image segmentation tasks. To improve the performance of U-Net on various segmentation tasks, we propose a novel architecture called DoubleU-Net, which is a combination of two U-Net architectures stacked on top of each other. The first U-Net uses a pre-trained VGG-19 as the encoder, which has already learned features from ImageNet and can be transferred to another task easily. To capture more semantic information efficiently, we added another U-Net at the bottom. We also adopt Atrous Spatial Pyramid Pooling (ASPP) to capture contextual information within the network. We have evaluated DoubleU-Net using four medical segmentation datasets, covering various imaging modalities such as colonoscopy, dermoscopy, and microscopy. Experiments on the MICCAI 2015 segmentation challenge, the CVC-ClinicDB, the 2018 Data Science Bowl challenge, and the Lesion boundary segmentation datasets demonstrate that the DoubleU-Net outperforms U-Net and the baseline models. Moreover, DoubleU-Net produces more accurate segmentation masks, especially in the case of the CVC-ClinicDB and MICCAI 2015 segmentation challenge datasets, which have challenging images such as smaller and flat polyps. These results show the improvement over the existing U-Net model. The encouraging results, produced on various medical image segmentation datasets, show that DoubleU-Net can be used as a strong baseline for both medical image segmentation and cross-dataset evaluation testing to measure the generalizability of Deep Learning (DL) models.
With a Coronavirus disease (COVID-19) case count exceeding 10 million worldwide, there is an increased need for a diagnostic capability. The main variables in increasing diagnostic capability are reduced cost, turnaround or diagnosis time, and upfron t equipment cost and accessibility. Two candidates for machine learning COVID-19 diagnosis are Computed Tomography (CT) scans and plain chest X-rays. While CT scans score higher in sensitivity, they have a higher cost, maintenance requirement, and turnaround time as compared to plain chest X-rays. The use of portable chest X-radiograph (CXR) is recommended by the American College of Radiology (ACR) since using CT places a massive burden on radiology services. Therefore, X-ray imagery paired with machine learning techniques is proposed a first-line triage tool for COVID-19 diagnostics. In this paper we propose a computer-aided diagnosis (CAD) to accurately classify chest X-ray scans of COVID-19 and normal subjects by fine-tuning several neural networks (ResNet18, ResNet50, DenseNet201) pre-trained on the ImageNet dataset. These neural networks are fused in a parallel architecture and the voting criteria are applied in the final classification decision between the candidate object classes where the output of each neural network is representing a single vote. Several experiments are conducted on the weakly labeled COVID-19-CT-CXR dataset consisting of 263 COVID-19 CXR images extracted from PubMed Central Open Access subsets combined with 25 normal classification CXR images. These experiments show an optimistic result and a capability of the proposed model to outperforming many state-of-the-art algorithms on several measures. Using k-fold cross-validation and a bagging classifier ensemble, we achieve an accuracy of 99.7% and a sensitivity of 100%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا