ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Stochastic Multireference Perturbation Theory for Correlated Systems with Large Active Spaces

124   0   0.0 ( 0 )
 نشر من قبل George Booth Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify the dominant computational cost within the recently introduced stochastic and internally contracted FCIQMC-NEVPT2 method for large active space sizes. This arises from the contribution to the four-body intermediates arising from low-excitation level sampled determinant pairs. We develop an effective way to mitigate this cost via an additional stochastic step within the sampling of the required NEVPT2 intermediates. We find this systematically improvable additional sampling can reduce simulation time by 80% without introducing appreciable error. This saving is expected to increase for larger active spaces. We combine this enhanced sampling scheme with full stochastic orbital optimization for the first time, and apply it to find FCIQMC-NEVPT2 energies for spin states of an iron porphyrin system within (24,24) active spaces with relatively meagre computational resources. This active space size can now be considered as routine for NEVPT2 calculations of strongly correlated molecular systems within this improved stochastic methodology.


قيم البحث

اقرأ أيضاً

Full Configuration Interaction Quantum Monte Carlo (FCIQMC) has been effectively applied to very large configuration interaction (CI) problems, and was recently adapted for use as an active space solver and combined with orbital optimisation. In this work, we detail an approach within FCIQMC to allow for efficient sampling of fully internally-contracted multireference perturbation theories within the same stochastic framework. Schemes are described to allow for the close control over the resolution of stochastic sampling of the effective higher-body intermediates within the active space. It is found that while CASPT2 seems less amenable to a stochastic reformulation, NEVPT2 is far more stable, requiring a similar number of walkers to converge the NEVPT2 expectation values as to converge the underlying CI problem. We demonstrate the application of the stochastic approach to the computation of NEVPT2 within a (24,24) active space in a biologically relevant system, and show that small numbers of walkers are sufficient for a faithful sampling of the NEVPT2 energy to chemical accuracy, despite the active space already exceeding the limits of practicality for traditional approaches. This raises prospects of an efficient stochastic solver for multireference chemical problems requiring large active spaces, with an accurate treatment of external orbitals.
We use the recently-developed Heat-bath Configuration Interaction (HCI) algorithm as an efficient active-space solver to perform multi-configuration self-consistent field calculations (HCISCF) with large active spaces. We give a detailed derivation o f the theory and show that difficulties associated with non-variationality of the HCI procedure can be overcome by making use of the Lagrangian formulation to calculate the HCI relaxed two body reduced density matrix. HCISCF is then used to study the electronic structure of butadiene, pentacene, and Fe-porphyrin. One of the most striking results of our work is that the converged active space orbitals obtained from HCISCF are relatively insensitive to the accuracy of the HCI calculation. This allows us to obtain nearly converged CASSCF energies with an estimated error of less than 1 mHa using the orbitals obtained from the HCISCF procedure in which the integral transformation is the dominant cost. For example, an HCISCF calculation on Fe-Porphyrin model complex with an active space of (44e, 44o) took only 412 seconds per iteration on a single node containing 28 cores, out of which 185 seconds were spent in the HCI calculation and the remaining 227 seconds were mainly used for integral transformation. Finally, we also show that active-space orbitals can be optimized using HCISCF to substantially speed up the convergence of the HCI energy to the Full CI limit because HCI is not invariant to unitary transformations within the active space.
We extend the recently proposed heat-bath configuration interaction (HCI) method [Holmes, Tubman, Umrigar, J. Chem. Theory Comput. 12, 3674 (2016)], by introducing a semistochastic algorithm for performing multireference Epstein-Nesbet perturbation t heory, in order to completely eliminate the severe memory bottleneck of the original method. The proposed algorithm has several attractive features. First, there is no sign problem that plagues several quantum Monte Carlo methods. Second, instead of using Metropolis-Hastings sampling, we use the Alias method to directly sample determinants from the reference wavefunction, thus avoiding correlations between consecutive samples. Third, in addition to removing the memory bottleneck, semistochastic HCI (SHCI) is faster than the deterministic variant for many systems if a stochastic error of 0.1 mHa is acceptable. Fourth, within the SHCI algorithm one can trade memory for a modest increase in computer time. Fifth, the perturbative calculation is embarrassingly parallel. The SHCI algorithm extends the range of applicability of the original algorithm, allowing us to calculate the correlation energy of very large active spaces. We demonstrate this by performing calculations on several first row dimers including F2 with an active space of (14e, 108o), Mn-Salen cluster with an active space of (28e, 22o), and Cr2 dimer with up to a quadruple-zeta basis set with an active space of (12e, 190o). For these systems we were able to obtain better than 1 mHa accuracy with a wall time of merely 55 seconds, 37 seconds, and 56 minutes on 1, 1, and 4 nodes, respectively.
We describe a modification of the stochastic coupled cluster algorithm that allows the use of multiple reference determinants. By considering the secondary references as excitations of the primary reference and using them to change the acceptance cri teria for selection and spawning, we obtain a simple form of stochastic multireference coupled cluster which preserves the appealing aspects of the single reference approach. The method is able to successfully describe strongly correlated molecular systems using few references and low cluster truncation levels, showing promise as a tool to tackle strong correlation in more general systems. Moreover, it allows simple and comprehensive control of the included references and excitors thereof, and this flexibility can be taken advantage of to gain insight into some of the inner workings of established electronic structure methods.
An adaptation of the full configuration interaction quantum Monte Carlo (FCIQMC) method is presented, for correlated electron problems containing heavy elements and the presence of significant relativistic effects. The modified algorithm allows for t he sampling of the four-component spinors of the Dirac--Coulomb(--Breit) Hamiltonian within the relativistic no-pair approximation. The loss of spin symmetry and the general requirement for complex-valued Hamiltonian matrix elements are the most immediate considerations in expanding the scope of FCIQMC into the relativistic domain, and the alternatives for their efficient implementation are motivated and demonstrated. For the canonical correlated four-component chemical benchmark application of Thallium Hydride, we show that the necessary modifications do not particularly adversely affect the convergence of the systematic (initiator) error to the exact correlation energy for FCIQMC calculations, which is primarily dictated by the sparsity of the wave function, allowing the computational effort to somewhat bypass the formal increases in Hilbert space dimension for these problems. We apply the method to the larger problem of the spectroscopic constants of Tin Oxide, correlating 28 electrons in 122 Kramers-paired spinors, finding good agreement with experimental and prior theoretical relativistic studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا