ترغب بنشر مسار تعليمي؟ اضغط هنا

Rheology of protein-stabilised emulsion gels envisioned as composite networks. 2 -- Framework for the study of emulsion gels

110   0   0.0 ( 0 )
 نشر من قبل Marion Roullet
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The aggregation of protein-stabilised emulsions leads to the formation of emulsion gels. These soft solids are classically envisioned as droplet-filled matrices. Here however, it is assumed that protein-coated sub-micron droplets contribute to the network formation in a similar way to proteins. Emulsion gels are thus envisioned as composite networks made of proteins and droplets. Emulsion gels with a wide range of composition are prepared and their viscoelasticity and frequency dependence are measured. Their rheological behaviours are then analysed and compared with the properties of pure gels presented in the first part of this study. The rheological behaviour of emulsion gels is shown to depend mostly on the total volume fraction, while the composition of the gel indicates its level of similarity with either pure droplet gels or pure protein gels. These results converge to form an emerging picture of protein-stabilised emulsion gel as intermediate between droplet and protein gels. This justifies a posteriori the hypothesis of composite networks, and opens the road for the formulation of emulsion gels with fine-tuned rheology.



قيم البحث

اقرأ أيضاً

Soft materials may break irreversibly upon applying sufficiently large shear oscillations, a process which physical mechanism remains largely elusive. In this work, the rupture of protein gels made of sodium caseinate under an oscillatory stress is s hown to occur in an abrupt, brittle-like manner. Upon increasing the stress amplitude, the build-up of harmonic modes in the strain response can be rescaled for all gel concentrations. This rescaling yields an empirical criterion to predict the rupture point way before the samples are significantly damaged. Fatigue experiments under stress oscillations of constant amplitude can be mapped onto the former results, which indicates that rupture is independent of the temporal pathway in which strain and damage accumulate. Finally, using ultrasonic imaging, we measure the local mechanical properties of the gels before, during and after breakdown, showing that the strain field remains perfectly homogeneous up to rupture but suddenly gives way to a solid-fluid phase separation upon breakdown.
We study the micromechanics of collagen-I gel with the goal of bridging the gap between theory and experiment in the study of biopolymer networks. Three-dimensional images of fluorescently labeled collagen are obtained by confocal microscopy and the network geometry is extracted using a 3d network skeletonization algorithm. Each fiber is modeled as a worm-like-chain that resists stretching and bending, and each cross-link is modeled as torsional spring. The stress-strain curves of networks at three different densities are compared to rheology measurements. The model shows good agreement with experiment, confirming that strain stiffening of collagen can be explained entirely by geometric realignment of the network, as opposed to entropic stiffening of individual fibers. The model also suggests that at small strains, cross-link deformation is the main contributer to network stiffness whereas at large strains, fiber stretching dominates. Since this modeling effort uses networks with realistic geometries, this analysis can ultimately serve as a tool for understanding how the mechanics of fibers and cross-links at the microscopic level produce the macroscopic properties of the network. While the focus of this paper is on the mechanics of collagen, we demonstrate a framework that can be applied to many biopolymer networks.
We sandwich a colloidal gel between two parallel plates and induce a radial flow by lifting the upper plate at a constant velocity. Two distinct scenarios result from such a tensile test: ($i$) stable flows during which the gel undergoes a tensile de formation without yielding, and ($ii$) unstable flows characterized by the radial growth of air fingers into the gel. We show that the unstable regime occurs beyond a critical energy input, independent of the gels macroscopic yield stress. This implies a local fluidization of the gel at the tip of the growing fingers and results in the most unstable wavelength of the patterns exhibiting the characteristic scalings of the classical viscous fingering instability. Our work provides a quantitative criterion for the onset of fingering in colloidal gels based on a local shear-induced yielding, in agreement with the delayed failure framework.
Colloids that interact via a short-range attraction serve as the primary building blocks for a broad range of self-assembled materials. However, one of the well-known drawbacks to this strategy is that these building blocks rapidly and readily conden se into a metastable colloidal gel. Using computer simulations, we illustrate how the addition of a small fraction of purely repulsive self-propelled colloids, a technique referred to as active doping, can prevent the formation of this metastable gel state and drive the system toward its thermodynamically favored crystalline target structure. The simplicity and robust nature of this strategy offers a systematic and generic pathway to improving the self-assembly of a large number of complex colloidal structures. We discuss in detail the process by which this feat is accomplished and provide quantitative metrics for exploiting it to modulate self-assembly. We provide evidence for the generic nature of this approach by demonstrating that it remains robust under a number of different anisotropic short-ranged pair interactions in both two and three dimensions. In addition, we report on a novel microphase in mixtures of passive and active colloids. For a broad range of self-propelling velocities, it is possible to stabilize a suspension of fairly monodisperse finite-size crystallites. Surprisingly, this microphase is also insensitive to the underlying pair interaction between building blocks. The active stabilization of these moderately-sized monodisperse clusters is quite remarkable and should be of great utility in the design of hierarchical self-assembly strategies. This work further bolsters the notion that active forces can play a pivotal role in directing colloidal self-assembly.
We investigated the viscoelastic properties of colloid-polymer mixtures at intermediate colloid volume fraction and varying polymer concentrations, thereby tuning the attractive interactions. Within the examined range of polymer concentrations, the s amples ranged from fluids to gels. Already in the liquid phase the viscoelastic properties significantly changed when approaching the gelation boundary, indicating the formation of clusters and transient networks. This is supported by an increasing correlation length of the density fluctuations, observed by static light scattering and microscopy. At the same time, the correlation function determined by dynamic light scattering completely decays, indicating the absence of dynamical arrest. Upon increasing the polymer concentration beyond the gelation boundary, the rheological properties changed qualitatively again, now they are consistent with the formation of colloidal gels. Our experimental results, namely the location of the gelation boundary as well as the elastic (storage) and viscous (loss) moduli, are compared to different theoretical models. These include consideration of the escape time as well as predictions for the viscoelastic moduli based on scaling relations and Mode Coupling Theories (MCT).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا