ﻻ يوجد ملخص باللغة العربية
In this paper we study virtual rational Betti numbers of a nilpotent-by-abelian group $G$, where the abelianization $N/N$ of its nilpotent part $N$ satisfies certain tameness property. More precisely, we prove that if $N/N$ is $2(c(n-1)-1)$-tame as a $G/N$-module, $c$ the nilpotency class of $N$, then $mathrm{vb}_j(G):=sup_{Minmathcal{A}_G}dim_mathbb{Q} H_j(M,mathbb{Q})$ is finite for all $0leq jleq n$, where $mathcal{A}_G$ is the set of all finite index subgroups of $G$.
Refining a result of Erdos and Mays, we give asymptotic series expansions for the functions $A(x)-C(x)$, the count of $nleq x$ for which every group of order $n$ is abelian (but not all cyclic), and $N(x)-A(x)$, the count of $nleq x$ for which every
We apply a construction developed in a previous paper by the authors in order to obtain a formula which enables us to compute $ell^2$-Betti numbers coming from a family of group algebras representable as crossed product algebras. As an application, w
Full residual finiteness growth of a finitely generated group $G$ measures how efficiently word metric $n$-balls of $G$ inject into finite quotients of $G$. We initiate a study of this growth over the class of nilpotent groups. When the last term of
Let $sigma ={sigma_{i} | iin I}$ be a partition of the set $Bbb{P}$ of all primes and $G$ a finite group. A chief factor $H/K$ of $G$ is said to be $sigma$-central if the semidirect product $(H/K)rtimes (G/C_{G}(H/K))$ is a $sigma_{i}$-group for some
The Tarski number of a non-amenable group G is the minimal number of pieces in a paradoxical decomposition of G. In this paper we investigate how Tarski numbers may change under various group-theoretic operations. Using these estimates and known prop