ترغب بنشر مسار تعليمي؟ اضغط هنا

$Omega$-dibaryon production with hadron interaction potential from the lattice QCD in relativistic heavy-ion collisions

67   0   0.0 ( 0 )
 نشر من قبل Yu-Gang Ma
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently the HAL QCD Collaboration reported the $Omega-Omega$ and $N-Omega$ interaction potentials by the lattice QCD simulations. Based on these results, $NOmega$ ($^5S_2$) and $OmegaOmega$ ($^1S_0$) bound states were predicted with the binding energy about a few MeV. In addition, $N-Omega$ HBT correlation function was also measured by the STAR Collaboration as well as the ALICE Collaboration. These results provide dynamical information whether or not $Omega$-dibaryons exist in the interaction aspects. Another necessary point for the detection of $Omega$-dibaryons is the experimental environment where the bound state could be produced and survived in the system. In this context, there are at least two necessary conditions to constrain the production probability of $Omega$-dibaryons, i.e. the one is the necessary short-range attractive interaction to form the bound state and the another is the experimental environment such as heavy-ion collision provides abundant enough strangeness and multiplicity of nucleons. In this Letter the $Omega-Omega$ and $Omega-$nucleon interaction potentials by the lattice QCD simulations were employed to obtain $OmegaOmega$ ($^1S_0$) and $NOmega$ ($^5S_2$) wave functions, and then the productions of $Omega$-dibaryons were estimated by using of a dynamical coalescence mechanism for the relativistic heavy-ion collisions at $sqrt{s_{NN}} = $ 200 GeV and 2.76 TeV.

قيم البحث

اقرأ أيضاً

By analyzing the available data on strange hadrons in central Pb+Pb collisions from the NA49 Collaboration at the Super Proton Synchrotron (SPS) and in central Au+Au collisions from the STAR Collaboration at the Relativistic Heavy-Ion Collider (RHIC) in a wide collision energy range from $sqrt{s_{rm NN}}$ = 6.3 GeV to 200 GeV, we find a possible non-monotonic behavior in the ratio $mathcal{O}_text{K-$Xi$-$phi$-$Lambda$}$= $frac{N(K^+)N(Xi^-)}{N(phi)N(Lambda)}$ of $K^+$, $Xi^-$, $phi$, and $Lambda$ yields as a function of $sqrt{s_{rm NN}}$. Based on the quark coalescence model, which can take into account the effect of quark density fluctuations on hadron production, a possible non-monotonic behavior in the dependence of the strange quark density fluctuation on $sqrt{s_{NN}}$ is obtained. This is in contrast to the coalescence model that does not include quark density fluctuations and also to the statistical hadronization model as both fail to describe even qualitatively the collision energy dependence of the ratio $mathcal{O}_text{K-$Xi$-$phi$-$Lambda$}$. Our findings thus suggest that the signal and location of a possible critical endpoint in the QCD phase diagram, which is expected to result in large quark density fluctuations, can be found in the on-going Bean Energy Scan program at RHIC.
Recent data on the production of $D$ mesons and $Lambda_c^+$ baryons in heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider exhibit a number of striking characteristics such as enhanced yield ratios $D_s^+/D^0$, $Lambda_c^+/D^0$ and their transverse momentum dependences. In this paper, we derive the momentum dependence of open charm mesons and singly charmed baryons produced in ultra-relativistic heavy ion collisions via the equal-velocity quark combination. We present analytic expressions and numerical results of yield ratios and compare them with the experimental data available. We make predictions for other charmed hadrons.
High energy heavy-ion collisions in laboratory produce a form of matter that can test Quantum Chromodynamics (QCD), the theory of strong interactions, at high temperatures. One of the exciting possibilities is the existence of thermodynamically disti nct states of QCD, particularly a phase of de-confined quarks and gluons. An important step in establishing this new state of QCD is to demonstrate that the system has attained thermal equilibrium. We present a test of thermal equilibrium by checking that the mean hadron yields produced in the small impact parameter collisions as well as grand canonical fluctuations of conserved quantities give consistent temperature and baryon chemical potential for the last scattering surface. This consistency for moments up to third order of the net-baryon number, charge, and strangeness is a key step in the proof that the QCD matter produced in heavy-ion collision attains thermal equilibrium. It is a clear indication for the first time, using fluctuation observables, that a femto-scale system attains thermalization. The study also indicates that the relaxation time scales for the system are comparable to or smaller than the life time of the fireball.
Relativistic heavy-ion experiments have observed similar quenching effects for (prompt) $D$ mesons compared to charged hadrons for transverse momenta larger than 6-8~GeV, which remains a mystery since heavy quarks typically lose less energies in quar k-gluon plasma than light quarks and gluons. Recent measurements of the nuclear modification factors of $B$ mesons and $B$-decayed $D$ mesons by the CMS Collaboration provide a unique opportunity to study the flavor hierarchy of jet quenching. Using a linear Boltzmann transport model combined with hydrodynamics simulation, we study the energy loss and nuclear modification for heavy and light flavor jets in high-energy nuclear collisions. By consistently taking into account both quark and gluon contributions to light and heavy flavor hadron productions within a next-to-leading order perturbative QCD framework, we obtain, for the first time, a satisfactory description of the experimental data on the nuclear modification factors for charged hadrons, $D$ mesons, $B$ mesons and $B$-decayed $D$ mesons simultaneously over a wide range of transverse momenta (8-300~GeV). This presents a solid solution to the flavor puzzle of jet quenching and constitutes a significant step towards the precision study of jet-medium interaction. Our study predicts that at transverse momenta larger than 30-40~GeV, $B$ mesons also exhibit similar suppression effects to charged hadrons and $D$ mesons, which may be tested by future measurements.
Heavy ion collisions provide a unique opportunity to study the nature of X(3872) compared with electron-positron and proton-proton (antiproton) collisions. With the abundant charm pairs produced in heavy-ion collisions, the production of multicharm h adrons and molecules can be enhanced by the combination of charm and anticharm quarks in the medium. We investigate the centrality and momentum dependence of X(3872) in heavy-ion collisions via the Langevin equation and instant coalescence model (LICM). When X(3872) is treated as a compact tetraquark state, the tetraquarks are produced via the coalescence of heavy and light quarks near the quantum chromodynamic (QCD) phase transition due to the restoration of the heavy quark potential at $Trightarrow T_c$. In the molecular scenario, loosely bound X(3872) is produced via the coalescence of $D^0$-$bar D^{*0}$ mesons in a hadronic medium after kinetic freeze-out. The phase space distributions of the charm quarks and D mesons in a bulk medium are studied with the Langevin equation, while the coalescence probability between constituent particles is controlled by the Wigner function, which encodes the internal structure of the formed particle. First, we employ the LICM to explain both $D^0$ and $J/psi$ production as a benchmark. Then, we give predictions regarding X(3872) production. We find that the total yield of tetraquark is several times larger than the molecular production in Pb-Pb collisions. Although the geometric size of the molecule is huge, the coalescence probability is small due to strict constraints on the relative momentum between $D^0$ and $bar D^{*0}$ in the molecular Wigner function, which significantly suppresses the molecular yield.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا