ﻻ يوجد ملخص باللغة العربية
We study the role of interactivity in distributed statistical inference under information constraints, e.g., communication constraints and local differential privacy. We focus on the tasks of goodness-of-fit testing and estimation of discrete distributions. From prior work, these tasks are well understood under noninteractive protocols. Extending these approaches directly for interactive protocols is difficult due to correlations that can build due to interactivity; in fact, gaps can be found in prior claims of tight bounds of distribution estimation using interactive protocols. We propose a new approach to handle this correlation and establish a unified method to establish lower bounds for both tasks. As an application, we obtain optimal bounds for both estimation and testing under local differential privacy and communication constraints. We also provide an example of a natural testing problem where interactivity helps.
MAXCUT defines a classical NP-hard problem for graph partitioning and it serves as a typical case of the symmetric non-monotone Unconstrained Submodular Maximization (USM) problem. Applications of MAXCUT are abundant in machine learning, computer vis
In wireless sensor networks (WSNs), the Eschenauer-Gligor (EG) key pre-distribution scheme is a widely recognized way to secure communications. Although connectivity properties of secure WSNs with the EG scheme have been extensively investigated, few
Given a separation oracle $mathsf{SO}$ for a convex function $f$ that has an integral minimizer inside a box with radius $R$, we show how to find an exact minimizer of $f$ using at most (a) $O(n (n + log(R)))$ calls to $mathsf{SO}$ and $mathsf{poly}(
In modern settings of data analysis, we may be running our algorithms on datasets that are sensitive in nature. However, classical machine learning and statistical algorithms were not designed with these risks in mind, and it has been demonstrated th
We study the assignment problem of objects to agents with heterogeneous preferences under distributional constraints. Each agent is associated with a publicly known type and has a private ordinal ranking over objects. We are interested in assigning a