ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the fine structure constant on a white dwarf surface; a detailed analysis of Fe V absorption in G191-B2B

75   0   0.0 ( 0 )
 نشر من قبل John Webb
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gravitational potential phi = GM/Rc^2 at the surface of the white dwarf G191-B2B is 10,000 times stronger than that at the Earths surface. Numerous photospheric absorption features are detected, making this a suitable environment to test theories in which the fundamental constants depend on gravity. We have measured the fine structure constant, alpha, at the white dwarf surface, used a newly calibrated Hubble Space Telescope STIS spectrum of G191-B2B, two new independent sets of laboratory Fe V wavelengths, and new atomic calculations of the sensitivity parameters that quantify Fe V wavelength dependency on alpha. The two results obtained are: dalpha/alpha = 6.36 +/- [0.33(stat) + 1.94(sys)] X 10^{-5} and dalpha/alpha = 4.21 +/- [0.47(stat) + 2.35(sys)] X 10^{-5}. The measurements hint that the fine structure constant increases slightly in the presence of strong gravitational fields. A comprehensive search for systematic errors is summarised, including possible effects from line misidentifications, line blending, stratification of the white dwarf atmosphere, the quadratic Zeeman effect and electric field effects, photospheric velocity flows, long-range wavelength distortions in the HST spectrum, and variations in the relative Fe isotopic abundances. None fully account for the observed deviation but the systematic uncertainties are heavily dominated by laboratory wavelength measurement precision.

قيم البحث

اقرأ أيضاً

89 - J. Hu , J. K. Webb , T. R. Ayres 2018
White dwarf atmospheres are subjected to gravitational potentials around $10^5$ times larger than occur on Earth. They provide a unique environment in which to search for any possible variation in fundamental physics in the presence of strong gravita tional fields. However, a sufficiently strong magnetic field will alter absorption line profiles and introduce additional uncertainties in measurements of the fine structure constant. Estimating the magnetic field strength is thus essential in this context. Here we model the absorption profiles of a large number of atomic transitions in the white dwarf photosphere, including first-order Zeeman effects in the line profiles, varying the magnetic field as a free parameter. We apply the method to a high signal-to-noise, high-resolution, far-ultraviolet HST/STIS spectrum of the white dwarf G191-B2B. The method yields a sensitive upper limit on its magnetic field of $B < 2300$ Gauss at the $3sigma$ level. Using this upper limit we find that the potential impact of quadratic Zeeman shifts on measurements of the fine structure constant in G191-B2B is 4 orders of magnitude below laboratory wavelength uncertainties.
We propose a new probe of the dependence of the fine structure constant, alpha, on a strong gravitational field using metal lines in the spectra of white dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white dw arf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits on the fractional variation of alpha of (Delta alpha/alpha)=(4.2 +- 1.6)x10^(-5) and (-6.1 +- 5.8)x10^(-5) from Fe V and Ni V spectra, respectively, at a dimensionless gravitational potential relative to Earth of (Delta phi) ~ 5x10^(-5). With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to two orders of magnitude.
67 - M. T. Murphy 2000
An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar absorption line spectra with laboratory spectra provides a sensitive probe for variability o f the fine structure constant, alpha, over cosmological time-scales. We have previously developed and applied a new method providing an order of magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-alpha absorption systems. We also re-analyse our previous lower redshift data and confirm our initial results. The constraints on alpha come from simultaneous fitting of absorption lines of subsets of the following species: Mg I, Mg II, Al II, Al III, Si II, Cr II, Fe II, Ni II and Zn II. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range 0.5 < z < 3.5. There is statistical evidence for a smaller alpha at earlier epochs: da/a = (-0.72 +/- 0.18) * 10^{-5}. The new and original samples are independent but separately yield consistent and significant non-zero values of da/a. We summarise the results of a thorough investigation of systematic effects published in a companion paper. The value we quote above is the raw value, not corrected for any of these systematic effects. The only significant systematic effects so far identified, if removed from our data, would lead to a more significant deviation of da/a from zero.
67 - T. Rauch , P. Quinet (2 2014
For the spectral analysis of high-resolution and high-signal-to-noise spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model-atmospheres are mandatory. These are strongly dependent on the reliability of the atomic dat a that is used for their calculation. In a recent analysis of the ultraviolet (UV) spectrum of the DA-type white dwarf G191-B2B, 21 Zn IV lines were newly identified. Because of the lack of Zn IV data, transition probabilities of the isoelectronic Ge VI were adapted for a first, coarse determination of the photospheric Zn abundance. We performed new calculations of Zn IV and Zn V oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of the Zn IV - V spectrum exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE0503-289. In the UV spectrum of G191-B2B, we identify 31 Zn IV and 16 Zn V lines. Most of these are identified for the first time in any star. We can reproduce well almost all of them at log Zn = -5.52 +/- 0.2 (mass fraction, about 1.7 times solar). In particular, the Zn IV / Zn V ionization equilibrium, which is a very sensitive indicator for the effective temperature, is well reproduced with the previously determined Teff = 60000 +/- 2000 and log g = 7.60 +/- 0.05. In the spectrum of RE0503-289, we identified 128 Zn V lines for the first time and determined log Zn = -3.57 +/- 0.2 (155 times solar). Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Zn IV and Zn V line profiles in two white dwarf (G191-B2B and RE0503-289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed us to determine the photospheric Zn abundance of these two stars precisely.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا