ﻻ يوجد ملخص باللغة العربية
The binary neutron star (BNS) merger event GW170817 clearly shows that a BNS merger launches a short Gamma-Ray Burst (sGRB) jet. Unlike collapsars, where the ambient medium is static, in BNS mergers the jet propagates through the merger ejecta that is expanding outward at substantial velocities ($sim 0.2c$). Here, we present semi-analytic and analytic models to solve the propagation of GRB jets through their surrounding media. These models improve our previous model by including the jet collimation by the cocoon self-consistently. We also perform a series of 2D numerical simulations of jet propagation in BNS mergers and in collapsars to test our models. Our models are consistent with numerical simulations in every aspect (the jet head radius, the cocoons lateral width, the jet opening angle including collimation, the cocoon pressure, and the jet-cocoon morphology). The energy composition of the cocoon is found to be different depending on whether the ambient medium is expanding or not; in the case of BNS merger jets, the cocoon energy is dominated by kinetic energy, while it is dominated by internal energy in collapsars. Our model will be useful for estimating electromagnetic counterparts to gravitational waves.
We present a comprehensive analytic model of a relativistic jet propagation in expanding media. This model is the first to cover the entire jet evolution from early to late times, as well as a range of configurations that are relevant to binary neutr
The structure of Gamma Ray Burst (GRB) jets impacts on their prompt and afterglow emission properties. The jet of GRBs could be uniform, with constant energy per unit solid angle within the jet aperture, or it could instead be structured, namely with
The gravitational wave (GW) memory from a radiating and decelerating point mass is studied in detail. It is found that for isotropic photon emission the memory generated from the photons is essentially the same with the memory from the point mass tha
There exists an inevitable scatter in intrinsic luminosity of Gamma Ray Bursts(GRBs). If there is relativistic beaming in the source, viewing angle variation necessarily introduces variation in the intrinsic luminosity function(ILF). Scatter in the I
It is now more than 40 years since the discovery of gamma-ray bursts (GRBs) and in the last two decades there has been major progress in the observations of bursts, the afterglows and their host galaxies. This recent progress has been fueled by the a