ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature-evolution of spectral function and optical conductivity in heavy fermion compound Ce$_{2}$IrIn$_{8}$ under crystalline electric field

73   0   0.0 ( 0 )
 نشر من قبل Bo Gyu Jang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the role of the crystalline electric field (CEF) in the temperature ($T$)-evolution of the Kondo resonance states and its effect on optical conductivity. We perform the combined first principles calculation of the density functional theory and dynamical mean field theory on Ce$_{2}$IrIn$_{8}$. The calculated spectral function reproduces the experimental observed CEF states at low $T$, while it shows a drastic change of the Fermi surface upon increasing $T$. The effect of the CEF states on the Fermi surface as a function of $T$ is elucidated through the first principles calculations as well as the analysis on the Anderson impurity model. Consequently, we suggest the importance of the CEF-driven orbital anisotropy in the low-energy states of optical experiments.

قيم البحث

اقرأ أيضاً

The crystalline electric field (CEF) energy level scheme of the heavy fermion superconductor CeCoIn_5 has been determined by means of inelastic neutron scattering (INS). Peaks observed in the INS spectra at 8 meV and 27 meV with incident neutron ener gies between E_i=30-60 meV and at a temperature T = 10 K correspond to transitions from the ground state to the two excited states, respectively. The wavevector and temperature dependence of these peaks are consistent with CEF excitations. Fits of the data to a CEF model yield the CEF parameters B^0_2=-0.80 meV, B^0_4=0.059 meV, and |B^4_4|= 0.137 meV corresponding to an energy level scheme: Gamma_7^(1) (0)[=0.487|+/-5/2> - 0.873|-/+3/2>], Gamma_7^(2) (8.6 meV, 100 K), and Gamma_6 (24.4 meV, 283 K).
79 - J. Klotz , K. Gotze , E. L. Green 2019
Ce$_{2}$PtIn$_{8}$ is a recently discovered heavy-fermion system structurally related to the well-studied superconductor CeCoIn$_{5}$. Here, we report on low-temperature de Haas-van Alphen-effect measurements in high magnetic fields in Ce$_{2}$PtIn$_ {8}$ and Pr$_{2}$PtIn$_{8}$. In addition, we performed band-structure calculations for localized and itinerant Ce-$4f$ electrons in Ce$_{2}$PtIn$_{8}$. Comparison with the experimental data of Ce$_{2}$PtIn$_{8}$ and of the $4f$-localized Pr$_{2}$PtIn$_{8}$ suggests the itinerant character of the Ce-$4f$ electrons. This conclusion is further supported by the observation of effective masses in Ce$_{2}$PtIn$_{8}$, which are strongly enhanced with up to 26 bare electron masses.
202 - Yang Luo , Chen Zhang , Qi-Yi Wu 2019
The three-dimensional electronic structure and Ce 4f electrons of the heavy fermion superconductor CePt2In7 is investigated. Angle-resolved photoemission spectroscopy using variable photon energy establishes the existence of quasi-two and three dimen sional Fermi surface topologies. Temperature-dependent 4d-4f on-resonance photoemission spectroscopies reveal that heavy quasiparticle bands begin to form at a temperature well above the characteristic (coherence) temperature T*. T* emergence may be closely related to crystal electric field splitting, particularly the low-lying heavy band formed by crystal electric field splitting.
Dynamical conductivity spectra s(w) have been measured for a diverse range of heavy-fermion (HF) Ce and Yb compounds. A characteristic excitation peak has been observed in the mid-infrared region of s(w) for all the compounds, and has been analyzed i n terms of a simple model based on conduction (c)-f electron hybridized band. A universal scaling is found between the observed peak energies and the estimated c-f hybridization strengths of these HF compounds. This scaling demonstrates that the model of c-f hybridized band can generally and quantitatively describe the charge excitation spectra of a wide range of HF compounds.
We report on the first study of the noncentrosymmetric ternary carbide YbCoC$_{2}$. Our magnetization, specific heat, resistivity and neutron diffraction measurements consistently show that the system behaves as a heavy-fermion compound, displaying a n amplitude-modulated magnetic structure below the Neel temperature reaching $T_{N}$ = 33 K under pressure. Such a large value, being the highest among the Yb-based systems, is explained in the light of our ab initio calculations, which show that the 4f electronic states of Yb have a dual nature -- i.e., due to their strong hybridization with the 3d states of Co, 4f states expose both localized and itinerant properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا