ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Person Re-identification Models from Videos with Weak Supervision

93   0   0.0 ( 0 )
 نشر من قبل Xueping Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most person re-identification methods, being supervised techniques, suffer from the burden of massive annotation requirement. Unsupervised methods overcome this need for labeled data, but perform poorly compared to the supervised alternatives. In order to cope with this issue, we introduce the problem of learning person re-identification models from videos with weak supervision. The weak nature of the supervision arises from the requirement of video-level labels, i.e. person identities who appear in the video, in contrast to the more precise framelevel annotations. Towards this goal, we propose a multiple instance attention learning framework for person re-identification using such video-level labels. Specifically, we first cast the video person re-identification task into a multiple instance learning setting, in which person images in a video are collected into a bag. The relations between videos with similar labels can be utilized to identify persons, on top of that, we introduce a co-person attention mechanism which mines the similarity correlations between videos with person identities in common. The attention weights are obtained based on all person images instead of person tracklets in a video, making our learned model less affected by noisy annotations. Extensive experiments demonstrate the superiority of the proposed method over the related methods on two weakly labeled person re-identification datasets.



قيم البحث

اقرأ أيضاً

Typical person re-identification frameworks search for k best matches in a gallery of images that are often collected in varying conditions. The gallery may contain image sequences when re-identification is done on videos. However, such a process is time consuming as re-identification has to be carried out multiple times. In this paper, we extract spatio-temporal sequences of frames (referred to as tubes) of moving persons and apply a multi-stage processing to match a given query tube with a gallery of stored tubes recorded through other cameras. Initially, we apply a binary classifier to remove noisy images from the input query tube. In the next step, we use a key-pose detection-based query minimization. This reduces the length of the query tube by removing redundant frames. Finally, a 3-stage hierarchical re-identification framework is used to rank the output tubes as per the matching scores. Experiments with publicly available video re-identification datasets reveal that our framework is better than state-of-the-art methods. It ranks the tubes with an increased CMC accuracy of 6-8% across multiple datasets. Also, our method significantly reduces the number of false positives. A new video re-identification dataset, named Tube-based Reidentification Video Dataset (TRiViD), has been prepared with an aim to help the re-identification research community
Images with different resolutions are ubiquitous in public person re-identification (ReID) datasets and real-world scenes, it is thus crucial for a person ReID model to handle the image resolution variations for improving its generalization ability. However, most existing person ReID methods pay little attention to this resolution discrepancy problem. One paradigm to deal with this problem is to use some complicated methods for mapping all images into an artificial image space, which however will disrupt the natural image distribution and requires heavy image preprocessing. In this paper, we analyze the deficiencies of several widely-used objective functions handling image resolution discrepancies and propose a new framework called deep antithetical learning that directly learns from the natural image space rather than creating an arbitrary one. We first quantify and categorize original training images according to their resolutions. Then we create an antithetical training set and make sure that original training images have counterparts with antithetical resolutions in this new set. At last, a novel Contrastive Center Loss(CCL) is proposed to learn from images with different resolutions without being interfered by their resolution discrepancies. Extensive experimental analyses and evaluations indicate that the proposed framework, even using a vanilla deep ReID network, exhibits remarkable performance improvements. Without bells and whistles, our approach outperforms previous state-of-the-art methods by a large margin.
This paper addresses the problem of handling spatial misalignments due to camera-view changes or human-pose variations in person re-identification. We first introduce a boosting-based approach to learn a correspondence structure which indicates the p atch-wise matching probabilities between images from a target camera pair. The learned correspondence structure can not only capture the spatial correspondence pattern between cameras but also handle the viewpoint or human-pose variation in individual images. We further introduce a global constraint-based matching process. It integrates a global matching constraint over the learned correspondence structure to exclude cross-view misalignments during the image patch matching process, hence achieving a more reliable matching score between images. Finally, we also extend our approach by introducing a multi-structure scheme, which learns a set of local correspondence structures to capture the spatial correspondence sub-patterns between a camera pair, so as to handle the spatial misalignments between individual images in a more precise way. Experimental results on various datasets demonstrate the effectiveness of our approach.
Most state-of-the-art person re-identification (re-id) methods depend on supervised model learning with a large set of cross-view identity labelled training data. Even worse, such trained models are limited to only the same-domain deployment with sig nificantly degraded cross-domain generalization capability, i.e. domain specific. To solve this limitation, there are a number of recent unsupervised domain adaptation and unsupervised learning methods that leverage unlabelled target domain training data. However, these methods need to train a separate model for each target domain as supervised learning methods. This conventional {em train once, run once} pattern is unscalable to a large number of target domains typically encountered in real-world deployments. We address this problem by presenting a train once, run everywhere pattern industry-scale systems are desperate for. We formulate a universal model learning approach enabling domain-generic person re-id using only limited training data of a {em single} seed domain. Specifically, we train a universal re-id deep model to discriminate between a set of transformed person identity classes. Each of such classes is formed by applying a variety of random appearance transformations to the images of that class, where the transformations simulate the camera viewing conditions of any domains for making the model training domain generic. Extensive evaluations show the superiority of our method for universal person re-id over a wide variety of state-of-the-art unsupervised domain adaptation and unsupervised learning re-id methods on five standard benchmarks: Market-1501, DukeMTMC, CUHK03, MSMT17, and VIPeR.
Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from t he conventional person re-id problem where it is assumed that person images are detected without any occlusion. We thus call this new problem the occluded person re-identitification. To address this new problem, we propose a novel Attention Framework of Person Body (AFPB) based on deep learning, consisting of 1) an Occlusion Simulator (OS) which automatically generates artificial occlusions for full-body person images, and 2) multi-task losses that force the neural network not only to discriminate a persons identity but also to determine whether a sample is from the occluded data distribution or the full-body data distribution. Experiments on a new occluded person re-id dataset and three existing benchmarks modified to include full-body person images and occluded person images show the superiority of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا