ﻻ يوجد ملخص باللغة العربية
Testing is one of the most important steps in software development. It ensures the quality of software. Continuous Integration (CI) is a widely used testing system that can report software quality to the developer in a timely manner during the development progress. Performance, especially scalability, is another key factor for High Performance Computing (HPC) applications. Though there are many applications and tools to profile the performance of HPC applications, none of them are integrated into the continuous integration. On the other hand, no current continuous integration tools provide easy-to-use scalability test capabilities. In this work, we propose BeeSwarm, a scalability test system that can be easily applied to the current CI test environment enabling scalability test capability for HPC developers. As a showcase, BeeSwarm is integrated into Travis CI and GitLab CI to execute the scalability test workflow on Chameleon cloud.
As part of the Exascale Computing Project (ECP), a recent focus of development efforts for the SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS) has been to enable GPU-accelerated time integration in scientific applications at
The blockchain paradigm provides a mechanism for content dissemination and distributed consensus on Peer-to-Peer (P2P) networks. While this paradigm has been widely adopted in industry, it has not been carefully analyzed in terms of its network scali
To support the variety of Big Data use cases, many Big Data related systems expose a large number of user-specifiable configuration parameters. Highlighted in our experiments, a MySQL deployment with well-tuned configuration parameters achieves a pea
The variational quantum Monte Carlo (VQMC) method received significant attention in the recent past because of its ability to overcome the curse of dimensionality inherent in many-body quantum systems. Close parallels exist between VQMC and the emerg
Distributed optimization for solving non-convex Optimal Power Flow (OPF) problems in power systems has attracted tremendous attention in the last decade. Most studies are based on the geographical decomposition of IEEE test systems for verifying the