ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Reconnection During the Post-Impulsive Phase of a Long-Duration Solar Flare: Bi-Directional Outflows as a Cause of Microwave and X-ray Bursts

200   0   0.0 ( 0 )
 نشر من قبل Sijie Yu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sijie Yu




اسأل ChatGPT حول البحث

Magnetic reconnection plays a crucial role in powering solar flares, production of energetic particles, and plasma heating. However, where the magnetic reconnections occur, how and where the released magnetic energy is transported, and how it is converted to other forms remain unclear. Here we report recurring bi-directional plasma outflows located within a large-scale plasma sheet observed in extreme ultraviolet emission and scattered white light during the post-impulsive gradual phase of the X8.2 solar flare on 2017 September 10. Each of the bi-directional outflows originates in the plasma sheet from a discrete site, identified as a magnetic reconnection site. These reconnection sites reside at very low altitudes ($< 180$ Mm, or 0.26 $R_{odot}$) above the top of the flare arcade, a distance only $<3%$ of the total length of a plasma sheet that extends to at least 10 $R_{odot}$. Each arrival of sunward outflows at the looptop region appears to coincide with an impulsive microwave and X-ray burst dominated by a hot source (10-20 MK) at the looptop, which is immediately followed by a nonthermal microwave burst located in the loopleg region. We propose that the reconnection outflows transport the magnetic energy released at localized magnetic reconnection sites outward in the form of kinetic energy flux and/or electromagnetic Poynting flux. The sunward-directed energy flux induces particle acceleration and plasma heating in the post-flare arcades, observed as the hot and nonthermal flare emissions.

قيم البحث

اقرأ أيضاً

We present observations of electron energization in magnetic reconnection outflows during the pre-impulsive phase of solar flare SOL2012-07-19T05:58. During a time-interval of about 20 minutes, starting 40 minutes before the onset of the impulsive ph ase, two X-ray sources were observed in the corona, one above the presumed reconnection region and one below. For both of these sources, the mean electron distribution function as a function of time is determined over an energy range from 0.1~keV up to several tens of keV, for the first time. This is done by simultaneous forward fitting of X-ray and EUV data. Imaging spectroscopy with RHESSI provides information on the high-energy tail of the electron distribution in these sources while EUV images from SDO/AIA are used to constrain the low specific electron energies. The measured electron distribution spectrum in the magnetic reconnection outflows is consistent with a time-evolving kappa-distribution with $kappa =3.5-5.5$. The spectral evolution suggests that electrons are accelerated to progressively higher energies in the source above the reconnection region, while in the source below, the spectral shape does not change but an overall increase of the emission measure is observed, suggesting density increase due to evaporation. The main mechanisms by which energy is transported away from the source regions are conduction and free-streaming electrons. The latter dominates by more than one order of magnitude and is comparable to typical non-thermal energies during the hard X-ray peak of solar flares, suggesting efficient acceleration even during this early phase of the event.
Using a recently developed analytical procedure, we determine the rate of magnetic reconnection in the standard model of eruptive solar flares. During the late phase, the neutral line is located near the lower tip of the reconnection current sheet, a nd the upper region of the current sheet is bifurcated into a pair of Petschek-type shocks. Despite the presence of these shocks, the reconnection rate remains slow if the resistivity is uniform and the flow is laminar. Fast reconnection is achieved only if there is some additional mechanism that can shorten the length of the diffusion region at the neutral line. Observations of plasma flows by the X-Ray Telescope (XRT) on Hinode imply that the diffusion region is in fact quite short. Two possible mechanisms for reducing the length of the diffusion region are localized resistivity and MHD turbulence.
We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwi se) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray (HXR) and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the Coronal Mass Ejection (CME) and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by GOES soft X-rays (SXR) and spatially-integrated EUV emission at 94 and 335 {AA}. We identify pulsations of $approx 60$ seconds in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.
We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EIS observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the s trong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient kappa0 = classical value) and the enthalpy flux dominant regime (kappa0 = 0.1 x classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is importance to reproduce the strong downflows in Fe XII and Fe XV.
We present a detailed multi-wavelength analysis and interpretation of the evolution of an M7.6 flare on October 24, 2003. The X-ray observations of the flare taken from the RHESSI spacecraft reveal two phases of the flare evolution. The first phase i s characterized by the altitude decrease of the X-ray looptop (LT) source for $sim$11 minutes. Such a long duration of the descending LT source motion is reported for the first time. The EUV loops, located below the X-ray LT source, also undergo contraction with similar speed ($sim$15 km s$^{-1}$) in this interval. During the second phase the two distinct hard X-ray footpoints (FP) sources are observed which correlate well with UV and H$alpha$ flare ribbons. The X-ray LT source now exhibits upward motion. The RHESSI spectra during the first phase are soft and indicative of hot thermal emission from flaring loops with temperatures $T>25$ MK at the early stage. On the other hand, the spectra at high energies ($varepsilon gtrsim$25 keV) follow hard power laws during the second phase ($gamma = 2.6-2.8$). We show that the observed motion of the LT and FP sources can be understood as a consequence of three-dimensional magnetic reconnection at a separator in the corona. During the first phase of the flare, the reconnection releases an excess of magnetic energy related to the magnetic tensions generated before a flare by the shear flows in the photosphere. The relaxation of the associated magnetic shear in the corona by the reconnection process explains the descending motion of the LT source. During the second phase, the ordinary reconnection process dominates describing the energy release in terms of the standard model of large eruptive flares.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا