ﻻ يوجد ملخص باللغة العربية
We establish the ultimate limits that quantum theory imposes on the accuracy attainable in optical ellipsometry. We show that the standard quantum limit, as usual reached when the incident light is in a coherent state, can be surpassed with the use of appropriate squeezed states and, for tailored beams, even pushed to the ultimate Heisenberg limit.
In Quantum Illumination (QI), a signal beam initially entangled with an idler beam held at the receiver interrogates a target region bathed in thermal background light. The returned beam is measured jointly with the idler in order to determine whethe
It is well known in the realm of quantum mechanics and information theory that the entropy is non-decreasing for the class of unital physical processes. However, in general, the entropy does not exhibit monotonic behavior. This has restricted the use
Quantum technology offers great advantages in many applications by exploiting quantum resources like nonclassicality, coherence, and entanglement. In practice, an environmental noise unavoidably affects a quantum system and it is thus an important is
In this paper, we introduce intrinsic non-locality as a quantifier for Bell non-locality, and we prove that it satisfies certain desirable properties such as faithfulness, convexity, and monotonicity under local operations and shared randomness. We t
Non-Hermitian dynamics has been widely studied to enhance the precision of quantum sensing; and non-reciprocity can be a powerful resource for non-Hermitian quantum sensing, as non-reciprocity allows to arbitrarily exceed the fundamental bound on the