ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards an all-orders calculation of the electroweak bubble wall velocity

95   0   0.0 ( 0 )
 نشر من قبل Jessica Turner
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze Higgs condensate bubble expansion during a first-order electroweak phase transition in the early Universe. The interaction of particles with the bubble wall can be accompanied by the emission of multiple soft gauge bosons. When computed at fixed order in perturbation theory, this process exhibits large logarithmic enhancements which must be resummed to all orders when the wall velocity is large. We perform this resummation both analytically and numerically at leading logarithmic accuracy. The numerical simulation is achieved by means of a particle shower in the broken phase of the electroweak theory. The two approaches agree to the 10% level. For fast-moving walls, we find the scaling of the thermal pressure exerted against the wall to be $Psim gamma^2T^4$, independent of the particle masses, implying a significantly slower terminal velocity than previously suggested.



قيم البحث

اقرأ أيضاً

The bubble wall velocity is essential for the phase transition dynamics in the early universe and its cosmological implications, such as the energy budget of phase transition gravitational wave and electroweak baryogenesis. One key factor to determin e the wall velocity is the collision term that quantifies the interactions between the massive particles in the plasma and the bubble wall. We improve the calculations of the collision term beyond the leading-log approximation, and further obtain more precise bubble wall velocity for a representative effective model.
We perform large-scale real-time simulations of a bubble wall sweeping through an out-of-equilibrium plasma. The scenario we have in mind is the electroweak phase transition, which may be first order in extensions of the Standard Model, and produce s uch bubbles. The process may be responsible for baryogenesis and can generate a background of primordial cosmological gravitational waves. We study thermodynamic features of the plasma near the advancing wall, the generation of Chern-Simons number/Higgs winding number and consider the potential for CP-violation at the wall generating a baryon asymmetry. A number of technical details necessary for a proper numerical implementation are developed.
Using the holographic correspondence as a tool, we determine the steady-state velocity of expanding vacuum bubbles nucleated within chiral finite temperature first-order phase transitions occurring in strongly-coupled large $N$ QCD-like models. We pr ovide general formulae for the friction force exerted by the plasma on the bubbles and for the steady-state velocity. In the top-down holographic description, the phase transitions are related to changes in the embedding of $Dq$-${bar Dq}$ flavor branes probing the black hole background sourced by a stack of $N$ $Dp$-branes. We first consider the Witten-Sakai-Sugimoto $D4$-$D8$-$bar D8$ setup, compute the friction force and deduce the equilibrium velocity. Then we extend our analysis to more general setups and to different dimensions. Finally, we briefly compare our results, obtained within a fully non-perturbative framework, to other estimates of the bubble velocity in the literature.
We re-evaluate the status of supersonic electroweak baryogenesis using a generalized fluid Ansatz for the non-equilibrium distribution functions. Instead of truncating the expansion to first order in momentum, we allow for higher order terms as well, including up to 21 fluctuations. The collision terms are computed analytically at leading-log accuracy. We also point out inconsistencies in the standard treatments of transport in electroweak baryogenesis, arguing that one cannot do without specifying an Ansatz for the distribution function. We present the first analysis of baryogenesis using the fluid approximation to higher orders. Our results support the recent findings that baryogenesis may indeed be possible even in the presence of supersonic wall velocities.
227 - S.J. Huber , P. John , M. Laine 1999
We solve the equations of motion for a CP violating phase between the two Higgs doublets at the bubble wall of the MSSM electroweak phase transition. Contrary to earlier suggestions, we do not find indications of spontaneous ``transitional CP violati on in the MSSM. On the other hand, in case there is explicit CP violation in the stop and chargino/neutralino sectors, the relative phase between the Higgses does become space dependent, but only mildly even in the maximal case. We also demonstrate that spontaneous CP violation within the bubble wall could occur, e.g., if the Higgs sector of the MSSM were supplemented by a singlet. Finally we point out some implications for baryogenesis computations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا