ﻻ يوجد ملخص باللغة العربية
We provide updated predictions for the hadronic decays $bar{B}_s^0to D_s^{(*)+} pi^-$ and $bar{B}^0to D^{(*)+} K^-$. They are based on $mathcal{O}(alpha_s^2)$ results for the QCD factorization amplitudes at leading power and on recent results for the $bar{B}_{(s)} to D_{(s)}^{(*)}$ form factors up to order ${cal O}(Lambda_{rm QCD}^2/m_c^2)$ in the heavy-quark expansion. We give quantitative estimates of the matrix elements entering the hadronic decay amplitudes at order ${cal O}(Lambda_{rm QCD}/m_b)$ for the first time. Our results are very precise, and uncover a substantial discrepancy between the theory predictions and the experimental measurements. We explore two possibilities for this discrepancy: non-factorizable contributions larger than predicted by the QCD factorization power counting, and contributions beyond the Standard Model. We determine the $f_s/f_d$ fragmentation fraction for the CDF, D0 and LHCb experiments for both scenarios.
Recently, the standard model predictions for the $B$-meson hadronic decays, $bar{B}^0 to D^{(ast)+}K^-$ and $bar{B}^0_s to D^{(ast)+}_s pi^-$, have been updated based on the QCD factorization approach. This improvement sheds light on a novel puzzle i
We present a measurement of the $CP$-violating weak mixing phase $phi_s$ using the decay $bar{B}^{0}_{s}to D_{s}^{+}D_{s}^{-}$ in a data sample corresponding to $3.0$ fb$^{-1}$ of integrated luminosity collected with the LHCb detector in $pp$ collisi
The first observation of the decays $bar{B}^0_{s}to D_s^+K^-pi^+pi^-$ and $bar{B}^0to D_s^+K^-pi^+pi^-$ are reported using an integrated luminosity of 1.0 fb$^{-1}$ recorded by the LHCb experiment. The branching fractions, normalized with respect to
Utilizing a data set corresponding to an integrated luminosity of 6.32~$rm fb^{-1}$, recorded by the BESIII detector at center-of-mass energies between 4.178 and 4.226~GeV, we perform an amplitude analysis of the decay $D_{s}^{+} to K_{S}^{0}pi^{+}pi
Measurements are presented of the branching fractions of the decays $B_{s}^{0} to D_{s}^{mp} K^{pm}$ and $B^{0} to D_{s}^{-} K^{+}$ relative to the decays $B_{s}^{0} to D_{s}^{-} pi^{+}$ and $B^{0} to D^{-} pi^{+}$, respectively. The data used corres