ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards ending the partial sky E-B ambiguity in CMB observations

126   0   0.0 ( 0 )
 نشر من قبل Shamik Ghosh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A crucial problem for partial sky analysis of CMB polarization is the $E$-$B$ leakage problem. Such leakage arises from the presence of `ambiguous modes that satisfy properties of both $E$ and $B$ modes. Solving this problem is critical for primordial polarization $B$ mode detection in partial sky CMB polarization experiments. In this work we introduce a new method for reducing the leakage. We demonstrate that if we complement the $E$-mode information outside the observation patch with ancillary data from full-sky CMB observations, we can reduce and even effectively remove the $E$-to-$B$ leakage. For this objective, we produce $E$-mode Stokes $QU$ maps from Wiener filtered full-sky intensity and polarization CMB observations. We use these maps to fill the sky region that is not observed by the ground-based experiment of interest, and thus complement the partial sky Stokes $QU$ maps. Since the $E$-mode information is now available on the full sky we see a significant reduction in the $E$-to-$B$ leakage. We evaluate on simulated data sets the performance of our method for a `shallow $f_text{sky}=8%$, and a `deep $f_text{sky}=2%$ northern hemisphere sky patch, with AliCPT-like properties, and a LSPE-like $f_text{sky}=30%$ sky patch, by combining those observations with Planck-like full sky polarization maps. We find that our method outperforms the standard and the pure-$B$ method pseudo-$C_ell$ estimators for all of our simulations. Our new method gives unbiased estimates of the $B$-mode power spectrum through-out the entire multipole range with near-optimal pseudo-$C_ell$ errors for $ell>20$. We also study the application of our method to the CMB-S4 experiment combined with LiteBIRD-like full sky data, and show that using signal-dominated full sky $E$-mode data we can eliminate the $E$-to-$B$ leakage problem.

قيم البحث

اقرأ أيضاً

Any isotropy violating phenomena on cosmic microwave background (CMB) induces off-diagonal correlations in the two-point function. These correlations themselves can be used to estimate the underlying anisotropic signals. Masking due to residual foreg rounds, or availability of partial sky due to survey limitation, are unavoidable circumstances in CMB studies. But, masking induces additional correlations, and thus complicates the recovery of such signals. In this work, we discuss a procedure based on bipolar spherical harmonic (BipoSH) formalism to comprehensively addresses any spurious correlations induced by masking and successfully recover hidden signals of anisotropy in observed CMB maps. This method is generic, and can be applied to recover a variety of isotropy violating phenomena. Here, we illustrate the procedure by recovering the subtle Doppler boost signal from simulated boosted CMB skies, which has become possible with the unprecedented full-sky sensitivity of PLANCK probe.
We present an augmented version of our dual messenger algorithm for spin field reconstruction on the sphere, while accounting for highly non-trivial and realistic noise models such as modulated correlated noise. We also describe an optimization metho d for the estimation of noise covariance from Monte Carlo simulations. Using simulated Planck polarized cosmic microwave background (CMB) maps as a showcase, we demonstrate the capabilities of the algorithm in reconstructing pure E and B maps, guaranteed to be free from ambiguous modes resulting from the leakage or coupling issue that plagues conventional methods of E/B separation. Due to its high speed execution, coupled with lenient memory requirements, the algorithm can be optimized in exact global Bayesian analyses of state-of-the-art CMB data for a statistically optimal separation of pure E and B modes. Our algorithm, therefore, has a potentially key role in the data analysis of high-resolution and high-sensitivity CMB data, especially with the range of upcoming CMB experiments tailored for the detection of the elusive primordial B-mode signal.
352 - J. Kang , P. A. R. Ade , Z. Ahmed 2020
BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio.
QUIJOTE (Q-U-I JOint TEnerife) is an experiment designed to achieve CMB B-mode polarization detection and sensitive enough to detect a primordial gravitational-wave component if the B-mode amplitude is larger than r = 0.05. It consists in two telesco pes and three instruments observing in the frequency range 10-42 GHz installed at the Teide Observatory in the Canary Islands, Spain. The observing strategy includes three raster scan deep integration fields for cosmology, a nominal wide survey covering the Northen Sky and specific raster scan deep integration observations in regions of specific interest. The main goals of the project are presented and the first scientific results obtained with the first instrument are reviewed.
We investigate the performance of a simple Bayesian fitting approach to correct the cosmic microwave background (CMB) B-mode polarization for gravitational lensing effects in the recovered probability distribution of the tensor-to-scalar ratio. We pe rform a two-dimensional power spectrum fit of the amplitude of the primordial B-modes (tensor-to-scalar ratio, $r$) and the amplitude of the lensing B-modes (parameter $A_{lens}$), jointly with the estimation of the astrophysical foregrounds including both synchrotron and thermal dust emissions. Using this Bayesian framework, we forecast the ability of the proposed CMB space mission LiteBIRD to constrain $r$ in the presence of realistic lensing and foreground contributions. We compute the joint posterior distribution of $r$ and $A_{lens}$, which we improve by adopting a prior on $A_{lens}$ taken from the South Pole Telescope (SPT) measurement. As it applies to the power spectrum, this approach cannot mitigate the uncertainty on $r$ that is due to E-mode cosmic variance transferred to B-modes by lensing, unlike standard delensing techniques that are performed on maps. However, the method allows to correct for the bias on $r$ induced by lensing, at the expense of a larger uncertainty due to the increased volume of the parameter space. We quantify, for different values of the tensor-to-scalar ratio, the trade-off between bias correction and increase of uncertainty on $r$. For LiteBIRD simulations, which include foregrounds and lensing contamination, we find that correcting the foreground-cleaned CMB B-mode power spectrum for the lensing bias, not the lensing cosmic variance, still guarantees a $3sigma$ detection of $r=5times 10^{-3}$. The significance of the detection is increased to $6sigma$ when the current SPT prior on $A_{lens}$ is adopted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا