ﻻ يوجد ملخص باللغة العربية
We investigate the electronic properties of type-II superconducting Nb(110) in an external magnetic field. Scanning tunneling spectroscopy reveals a complex vortex shape which develops from circular via coffee bean-shaped to elliptical when decreasing the energy from the edge of the superconducting gap to the Fermi level. This anisotropy is traced back to the local density of states of Caroli-de-Gennes-Matricon states which exhibits a direction-dependent splitting. Oxidizing the Nb(110) surface triggers the transition from the clean to the dirty limit, quenches the vortex bound states, and leads to an isotropic appearance of the vortices. Density functional theory shows that the Nb(110) Fermi surface is stadium-shaped near the Gamma point. Calculations within the Bogoliubov-de-Gennes theory using these Fermi contours consistently reproduce the experimental results.
We report on the layer-by-layer growth of single-crystal Al2O3 thin-films on Nb (110). Single-crystal Nb films are first prepared on A-plane sapphire, followed by the evaporation of Al in an O2 background. The first stages of Al2O3 growth are layer-b
The magnetic field distribution around the vortices in TmNi2B2C in the paramagnetic phase was studied experimentally as well as theoretically. The vortex form factor, measured by small-angle neutron scattering, is found to be field independent up to
We report on a study of the structural, magnetic and superconducting properties of Nb(25nm)/Gd($d_f$)/Nb(25nm) hybrid structures of a superconductor/ ferromagnet (S/F) type. The structural characterization of the samples, including careful determinat
Paramagnetic Meissner Effect (PME) was observed in Co/Nb/Co trilayers and multilayers. Measurements of the response to perpendicular external field near the superconducting transition temperature were carried out for various Nb thicknesses. PME was f
We have investigated the structural, magnetic and superconducting properties of [Nb(1.5nm)/Fe(x)]$_{10}$ superlattices deposited on a thick Nb(50nm) layer. Our investigation showed that the Nb(50nm) layer grows epitaxially at 800$^circ$C on Al$_2$O$_