ﻻ يوجد ملخص باللغة العربية
Precision measurement of the beam pattern of an antenna is very important for many applications. While traditionally such measurement is often made in a microwave anechoic chamber or at a test range, measurement using an unmanned aerial vehicle offers a number of advantages: the measurement can be made for the assembled antenna on site, thus reflecting the actual characteristics of the antenna of interest, and more importantly, it can be performed for larger antennas which cannot be steered or easily measured using the anechoic chamber and test range. Here we report our beam measurement experiment with UAV for a 6 meter dish used in the Tianlai array, which is a radio astronomy experiment. Due to the dishs small collecting area, calibration with an astronomical source only allows for determining the antenna beam pattern over a very limited angular range. We describe in detail the setup of the experiment, the components of the signal transmitting system, the design of the flight path and the procedure for data processing. We find the UAV measurement of the beam pattern agrees very well with the astronomical source measurement in the main lobe, but the UAV measurement can be extended to the fourth side lobe. The measured position and width of each lobe also shows good agreement with electromagnetic field simulation. This UAV-based approach of beam pattern measurement is flexible and inexpensive, and the technique may also be applied to other experiments.
The Tianlai Dish Pathfinder Array is a radio interferometer designed to test techniques for 21~cm intensity mapping in the post-reionization universe as a means for measuring large-scale cosmic structure. It performs drift scans of the sky at constan
The Allen Telescope Array (ATA) is a cm-wave interferometer in California, comprising 42 antenna elements with 6-m diameter dishes. We characterize the antenna optical accuracy using two-antenna interferometry and radio holography. The distortion of
Visual object tracking, which is representing a major interest in image processing field, has facilitated numerous real world applications. Among them, equipping unmanned aerial vehicle (UAV) with real time robust visual trackers for all day aerial m
Astronomical adaptive optics systems are used to increase effective telescope resolution. However, they cannot be used to observe the whole sky since one or more natural guide stars of sufficient brightness must be found within the telescope field of
The study of the linear and circular polarization in AGN allows one to gain detailed information about the properties of the magnetic fields in these objects. However, especially the observation of circular polarization (CP) with single-dish radio-te