ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam Measurements of the Tianlai Dish Radio Telescope using an Unmanned Aerial Vehicle

61   0   0.0 ( 0 )
 نشر من قبل Juyong Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precision measurement of the beam pattern of an antenna is very important for many applications. While traditionally such measurement is often made in a microwave anechoic chamber or at a test range, measurement using an unmanned aerial vehicle offers a number of advantages: the measurement can be made for the assembled antenna on site, thus reflecting the actual characteristics of the antenna of interest, and more importantly, it can be performed for larger antennas which cannot be steered or easily measured using the anechoic chamber and test range. Here we report our beam measurement experiment with UAV for a 6 meter dish used in the Tianlai array, which is a radio astronomy experiment. Due to the dishs small collecting area, calibration with an astronomical source only allows for determining the antenna beam pattern over a very limited angular range. We describe in detail the setup of the experiment, the components of the signal transmitting system, the design of the flight path and the procedure for data processing. We find the UAV measurement of the beam pattern agrees very well with the astronomical source measurement in the main lobe, but the UAV measurement can be extended to the fourth side lobe. The measured position and width of each lobe also shows good agreement with electromagnetic field simulation. This UAV-based approach of beam pattern measurement is flexible and inexpensive, and the technique may also be applied to other experiments.



قيم البحث

اقرأ أيضاً

The Tianlai Dish Pathfinder Array is a radio interferometer designed to test techniques for 21~cm intensity mapping in the post-reionization universe as a means for measuring large-scale cosmic structure. It performs drift scans of the sky at constan t declination. We describe the design, calibration, noise level, and stability of this instrument based on the analysis of about $sim 5 %$ of 6,200 hours of on-sky observations through October, 2019. Beam pattern determinations using drones and the transit of bright sources are in good agreement, and compatible with electromagnetic simulations. Combining all the baselines, we make maps around bright sources and show that the array behaves as expected. A few hundred hours of observations at different declinations have been used to study the array geometry and pointing imperfections, as well as the instrument noise behaviour. We show that the system temperature is below 80~K for most feed antennas, and that noise fluctuations decrease as expected with integration time, at least up to a few hundred seconds. Analysis of long integrations, from 10 nights of observations of the North Celestial Pole, yielded visibilities with amplitudes of 20-30~mK, consistent with the expected signal from the NCP radio sky with $<10,$mK precision for $1 ~mathrm{MHz} times 1~ mathrm{min}$ binning. Hi-pass filtering the spectra to remove smooth spectrum signal yields a residual consistent with zero signal at the $0.5,$mK level.
The Allen Telescope Array (ATA) is a cm-wave interferometer in California, comprising 42 antenna elements with 6-m diameter dishes. We characterize the antenna optical accuracy using two-antenna interferometry and radio holography. The distortion of each telescope relative to the average is small, with RMS differences of 1 percent of beam peak value. Holography provides images of dish illumination pattern, allowing characterization of as-built mirror surfaces. The ATA dishes can experience mm-scale distortions across -2 meter lengths due to mounting stresses or solar radiation. Experimental RMS errors are 0.7 mm at night and 3 mm under worst case solar illumination. For frequencies 4, 10, and 15 GHz, the nighttime values indicate sensitivity losses of 1, 10 and 20 percent, respectively. The ATA.s exceptional wide-bandwidth permits observations over a continuous range 0.5 to 11.2 GHz, and future retrofits may increase this range to 15 GHz. Beam patterns show a slowly varying focus frequency dependence. We probe the antenna optical gain and beam pattern stability as a function of focus and observation frequency, concluding that ATA can produce high fidelity images over a decade of simultaneous observation frequencies. In the day, the antenna sensitivity and pointing accuracy are affected. We find that at frequencies greater than 5 GHz, daytime observations greater than 5 GHz will suffer some sensitivity loss and it may be necessary to make antenna pointing corrections on a 1 to 2 hourly basis.
Visual object tracking, which is representing a major interest in image processing field, has facilitated numerous real world applications. Among them, equipping unmanned aerial vehicle (UAV) with real time robust visual trackers for all day aerial m aneuver, is currently attracting incremental attention and has remarkably broadened the scope of applications of object tracking. However, prior tracking methods have merely focused on robust tracking in the well-illuminated scenes, while ignoring trackers capabilities to be deployed in the dark. In darkness, the conditions can be more complex and harsh, easily posing inferior robust tracking or even tracking failure. To this end, this work proposed a novel discriminative correlation filter based tracker with illumination adaptive and anti dark capability, namely ADTrack. ADTrack firstly exploits image illuminance information to enable adaptability of the model to the given light condition. Then, by virtue of an efficient and effective image enhancer, ADTrack carries out image pretreatment, where a target aware mask is generated. Benefiting from the mask, ADTrack aims to solve a dual regression problem where dual filters, i.e., the context filter and target focused filter, are trained with mutual constraint. Thus ADTrack is able to maintain continuously favorable performance in all-day conditions. Besides, this work also constructed one UAV nighttime tracking benchmark UAVDark135, comprising of more than 125k manually annotated frames, which is also very first UAV nighttime tracking benchmark. Exhaustive experiments are extended on authoritative daytime benchmarks, i.e., UAV123 10fps, DTB70, and the newly built dark benchmark UAVDark135, which have validated the superiority of ADTrack in both bright and dark conditions on a single CPU.
Astronomical adaptive optics systems are used to increase effective telescope resolution. However, they cannot be used to observe the whole sky since one or more natural guide stars of sufficient brightness must be found within the telescope field of view for the AO system to work. Even when laser guide stars are used, natural guide stars are still required to provide a constant position reference. Here, we introduce a technique to overcome this problem by using rotary unmanned aerial vehicles (UAVs) as a platform from which to produce artificial guide stars. We describe the concept, which relies on the UAV being able to measure its precise relative position. We investigate the adaptive optics performance improvements that can be achieved, which in the cases presented here can improve the Strehl ratio by a factor of at least 2 for a 8~m class telescope. We also discuss improvements to this technique, which is relevant to both astronomical and solar adaptive optics systems.
141 - E. Cenacchi , A. Kraus , A. Orfei 2009
The study of the linear and circular polarization in AGN allows one to gain detailed information about the properties of the magnetic fields in these objects. However, especially the observation of circular polarization (CP) with single-dish radio-te lescopes is usually difficult because of the weak signals to be expected. Normally CP is derived as the (small) difference of two large numbers (LHC and RHC); hence an accurate calibration is absolutely necessary. Our aim is to improve the calibration accuracy to include the Stokes parameter V in the common single-dish polarimetric measurements, allowing a full Stokes study of the source under examination. A detailed study, up to the 2nd order, of the Mueller matrix elements in terms of cross-talk components allows us to reach the accuracy necessary to study circular polarization. The new calibration method has been applied to data taken at the 100-m Effelsberg radio-telescope during regular test observations of extragalactic sources at 2.8, 3.6, 6 and 11 cm. The D-terms in phase and amplitude appear very stable with time and the few known values of circular polarization have been confirmed. It is shown that, whenever a classical receiver and a multiplying polarimeter are available, the proposed calibration scheme allows one to include Stokes V in standard single-dish polarimetric observations as difference of two native circular outputs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا