ﻻ يوجد ملخص باللغة العربية
If the Laplacian matrix of a graph has a full set of orthogonal eigenvectors with entries $pm1$, then the matrix formed by taking the columns as the eigenvectors is a Hadamard matrix and the graph is said to be Hadamard diagonalizable. In this article, we prove that if $n=8k+4$ the only possible Hadamard diagonalizable graphs are $K_n$, $K_{n/2,n/2}$, $2K_{n/2}$, and $nK_1$, and we develop an efficient computation for determining all graphs diagonalized by a given Hadamard matrix of any order. Using these two tools, we determine and present all Hadamard diagonalizable graphs up to order 36. Note that it is not even known how many Hadamard matrices there are of order 36.
In light of recent interest in Hadamard diagonalisable graphs (graphs whose Laplacian matrix is diagonalisable by a Hadamard matrix), we generalise this notion from real to complex Hadamard matrices. We give some basic properties and methods of const
The minimum rank of a simple graph $G$ is defined to be the smallest possible rank over all symmetric real matrices whose $ij$th entry (for $i eq j$) is nonzero whenever ${i,j}$ is an edge in $G$ and is zero otherwise. Minimum rank is a difficult par
The maximum matching width is a width-parameter that is defined on a branch-decomposition over the vertex set of a graph. The size of a maximum matching in the bipartite graph is used as a cut-function. In this paper, we characterize the graphs of ma
Let $G$ be an $n$-vertex graph with adjacency matrix $A$, and $W=[e,Ae,ldots,A^{n-1}e]$ be the walk matrix of $G$, where $e$ is the all-one vector. In Wang [J. Combin. Theory, Ser. B, 122 (2017): 438-451], the author showed that any graph $G$ is uniq
In his survey Beyond graph energy: Norms of graphs and matrices (2016), Nikiforov proposed two problems concerning characterizing the graphs that attain equality in a lower bound and in a upper bound for the energy of a graph, respectively. We show t