ﻻ يوجد ملخص باللغة العربية
This article is devoted to the simultaneous resolution of three inverse problems, among the most important formulation of inverse problems for partial differential equations, stated for some class of diffusion equations from a single boundary measurement. Namely, we consider the simultaneous unique determination of several class of coefficients, some internal sources (a source term and an initial condition) and an obstacle appearing in a diffusion equation from a single boundary measurement. Our problem can be formulated as the simultaneous determination of information about a diffusion process (velocity field, density of the medium), an obstacle and of the source of diffusion. We consider this problems in the context of a classical diffusion process described by a convection-diffusion equation as well as an anomalous diffusion phenomena described by a time fractional diffusion equation.
We consider the inverse problem of determining different type of information about a diffusion process, described by ordinary or fractional diffusion equations stated on a bounded domain, like the density of the medium or the velocity field associate
In this article, for a two dimensional fractional diffusion equation, we study an inverse problem for simultaneous restoration of the fractional order and the source term from the sparse boundary measurements. By the adjoint system corresponding to o
This article deals with the uniqueness in identifying multiple parameters simultaneously in the one-dimensional time-fractional diffusion-wave equation of fractional time-derivative order $in (0,2)$ with the zero Robin boundary condition. Using the L
We consider a nonlocal semi-linear parabolic equation on a connected exterior domain of the form $mathbb{R}^Nsetminus K$, where $Ksubsetmathbb{R}^N$ is a compact obstacle. The model we study is motivated by applications in biology and takes into acco
Let $0le u_0(x)in L^1(R^2)cap L^{infty}(R^2)$ be such that $u_0(x) =u_0(|x|)$ for all $|x|ge r_1$ and is monotone decreasing for all $|x|ge r_1$ for some constant $r_1>0$ and ${ess}inf_{2{B}_{r_1}(0)}u_0ge{ess} sup_{R^2setminus B_{r_2}(0)}u_0$ for so