ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Possibilities of Detecting Helium D$_3$ Line Polarization with Metis

50   0   0.0 ( 0 )
 نشر من قبل Ji\\v{r}\\'i \\v{S}t\\v{e}p\\'an
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Space coronagraph Metis on board of the Solar Orbiter offers us new capabilities for studying eruptive prominences and coronal mass ejections (CME). Its two spectral channels, hydrogen L$alpha$ and visible-light (VL) will provide, for the first time, co-aligned and co-temporal images to study dynamics and plasma properties of CMEs. Moreover, with the VL channel (580 - 640 nm) we find an exciting possibility to detect the helium D$_3$ line (587.73 nm) and its linear polarization. The aim of this study is to predict the diagnostics potential of this line regarding the CME thermal and magnetic structure. For a grid of models we first compute the intensity of the D$_3$ line together with VL continuum intensity due to Thomson scattering on core electrons. We show that the Metis VL channel will detect a mixture of both, with predominance of the helium emission at intermediate temperatures between 30 - 50,000 K. Then we use the code HAZEL to compute the degree of linear polarization detectable in the VL channel. This is a mixture of D$_3$ scattering polarization and continuum polarization. The former one is lowered in the presence of a magnetic field and the polarization axis is rotated (Hanle effect). Metis has the capability of measuring $Q/I$ and $U/I$ polarization degrees and we show their dependence on temperature and magnetic field. At $T$=30,000 K we find a significant lowering of $Q/I$ which is due to strongly enhanced D$_3$ line emission, while depolarization at 10 G amounts roughly to 10 %.



قيم البحث

اقرأ أيضاً

The magnetic fields of the solar system planets provide valuable insights into the planets interiors and can have dramatic consequences for the evolution of their atmospheres and interaction with the solar wind. However, we have little direct knowled ge of magnetic fields in exoplanets. Here we present a method for detecting magnetic fields in the atmospheres of close-in exoplanets based on spectropolarimetric transit observations at the wavelength of the helium line at 1083 nm. This methodology has been successfully applied before for exploring magnetic fields in solar coronal filaments. Strong absorption signatures (transit depths on the order of a few percent) in the 1083 nm line have recently been observed for several close-in exoplanets. We show that in the conditions in these escaping atmospheres, metastable helium atoms should be optically pumped by the starlight and, for field strengths more than a few $times 10^{-4}$ G, should align with the magnetic field. This results in linearly polarized absorption at 1083 nm that traces the field direction (the Hanle effect), which we explore by both analytic computation and with the Hazel numerical code. The linear polarization $sqrt{Q^2+U^2}/I$ ranges from $sim 10^{-3}$ in optimistic cases down to a few $times 10^{-5}$ for particularly unfavorable cases, with very weak dependence on field strength. The line-of-sight component of the field results in a slight circular polarization (the Zeeman effect), also reaching $V/Isim {rm few}times 10^{-5}(B_parallel/10,{rm G})$. We discuss the detectability of these signals with current (SPIRou) and future (extremely large telescope) high-resolution infrared spectropolarimeters, and we briefly comment on possible sources of astrophysical contamination.
In this paper, we present corrections to the spectroscopic parameters of DB and DBA white dwarfs with -10.0 < log(H/He) < -2.0, 7.5 < log(g) < 9.0 and 12000 K < T_eff < 34000 K, based on 282 3D atmospheric models calculated with the CO5BOLD radiation -hydrodynamics code. These corrections arise due to a better physical treatment of convective energy transport in 3D models when compared to the previously available 1D model atmospheres. By applying the corrections to an existing SDSS sample of DB and DBA white dwarfs, we find significant corrections both for the effective temperature and surface gravity. The 3D log(g) corrections are most significant for T_eff < 18000 K, reaching up to -0.20 dex at log(g) = 8.0. However, in this low effective temperature range, the surface gravity determined from the spectroscopic technique can also be significantly affected by the treatment of the neutral van der Waals line broadening of helium and by non-ideal effects due to the perturbation of helium by neutral atoms. Thus, by removing uncertainties due to 1D convection, our work showcases the need for improved description of microphysics for DB and DBA model atmospheres. Overall, we find that our 3D spectroscopic parameters for the SDSS sample are generally in agreement with Gaia DR2 absolute fluxes within 1-3{sigma} for individual white dwarfs. By comparing our results to DA white dwarfs, we have determined that the precision and accuracy of DB/DBA atmospheric models are similar. For ease of user application of the correction functions, we provide an example Python code.
198 - M. Romoli 2021
The investigation of the wind in the solar corona initiated with the observations of the resonantly scattered UV emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying the Doppler dimming diagno stics. Metis on Solar Orbiter complements the UVCS spectroscopic observations, performed during solar activity cycle 23, by simultaneously imaging the polarized visible light and the HI Ly-alpha corona in order to obtain high-spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, on May 15, 2020, provide the first HI Ly-alpha images of the extended corona and the first instantaneous map of the speed of the coronal plasma outflows during the minimum of solar activity and allow us to identify the layer where the slow wind flow is observed. The polarized visible light (580-640 nm), and the UV HI Ly-alpha (121.6 nm) coronal emissions, obtained with the two Metis channels, are combined in order to measure the dimming of the UV emission relative to a static corona. This effect is caused by the outward motion of the coronal plasma along the direction of incidence of the chromospheric photons on the coronal neutral hydrogen. The plasma outflow velocity is then derived as a function of the measured Doppler dimming. The static corona UV emission is simulated on the basis of the plasma electron density inferred from the polarized visible light. This study leads to the identification, in the velocity maps of the solar corona, of the high-density layer about +/-10 deg wide, centered on the extension of a quiet equatorial streamer present at the East limb where the slowest wind flows at about (160 +/- 18) km/s from 4 Rs to 6 Rs. Beyond the boundaries of the high-density layer, the wind velocity rapidly increases, marking the transition between slow and fast wind in the corona.
METIS is one of the three first-light instruments planned for the ELT, mainly dedicated to high contrast imaging in the mid-infrared. On the SPHERE high-contrast instrument currently installed at the VLT, we observe that one of the main contrast limi tations is the wind driven halo, due to the limited AO running speed with respect to the atmospheric turbulence temporal evolution. From this observation, we extrapolate this signature to the ELT/METIS instrument, which is equipped with a single conjugated adaptive optics system and with several coronagraphic devices. By making use of an analytic AO simulator, we compare the amount of wind driven halo observed with SPHERE and with METIS, under the same turbulence conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا