ﻻ يوجد ملخص باللغة العربية
Extinct radio pulsars, in which stationary, self-sustaining generation of a relativistic electron-positron plasma becomes impossible when rotation brakes down, can be sources of a subrelativistic flux of positrons and electrons. We assume that the observed excess of positrons in the bulge and the disc of the Galaxy is associated with these old neutron stars. The production of pairs in their magnetospheres occurs due to one-photon absorption of gamma quanta of the Galactic and extragalactic backgrounds. The cascade process of plasma production leads to the flux of positrons escaping from the open magnetosphere $simeq 3 times 10^{34} text{ s}^{-1}$. The total flux of positrons from all old Galactic neutron stars with rotational periods $1.5 < P < 35$ s is $simeq 3 times 10^{43} text{ s}^{-1}$. The energy of positrons is less than $simeq 10$ MeV. The estimated characteristics satisfy the requirements for the positron source responsible for the 511-keV Galactic annihilation line.
Observations of pulsars with the Large Area Telescope (LAT) on the Fermi satellite have revolutionized our view of the gamma-ray pulsar population. For the first time, a large number of young gamma-ray pulsars have been discovered in blind searches o
We propose a new method to detect off-pulse (unpulsed and/or continuous) emission from pulsars, using the intensity modulations associated with interstellar scintillation. Our technique involves obtaining the dynamic spectra, separately for on-pulse
LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well-suited for studying the frequency evolution of pulse profile morphology caused by bo
We present high signal-to-noise, full polarization pulse profiles for 40 bright, slowly-rotating (non-recycled) pulsars using the new Ultra-Wideband Low-frequency (UWL; 704-4032 MHz) receiver on the Parkes radio telescope. We obtain updated and accur
Pulsars play a crucial astrophysical role as the highly energetic compact radio, X-ray, and gamma-ray sources. Our previous works show that the radio pulsars found as the pulsing gamma sources by the Large Area Telescope (LAT) on the board of the Fer