ترغب بنشر مسار تعليمي؟ اضغط هنا

SSN: Soft Shadow Network for Image Compositing

76   0   0.0 ( 0 )
 نشر من قبل Yichen Sheng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce an interactive Soft Shadow Network (SSN) to generates controllable soft shadows for image compositing. SSN takes a 2D object mask as input and thus is agnostic to image types such as painting and vector art. An environment light map is used to control the shadows characteristics, such as angle and softness. SSN employs an Ambient Occlusion Prediction module to predict an intermediate ambient occlusion map, which can be further refined by the user to provides geometric cues to modulate the shadow generation. To train our model, we design an efficient pipeline to produce diverse soft shadow training data using 3D object models. In addition, we propose an inverse shadow map representation to improve model training. We demonstrate that our model produces realistic soft shadows in real-time. Our user studies show that the generated shadows are often indistinguishable from shadows calculated by a physics-based renderer and users can easily use SSN through an interactive application to generate specific shadow effects in minutes.



قيم البحث

اقرأ أيضاً

Seamlessly blending features from multiple images is extremely challenging because of complex relationships in lighting, geometry, and partial occlusion which cause coupling between different parts of the image. Even though recent work on GANs enable s synthesis of realistic hair or faces, it remains difficult to combine them into a single, coherent, and plausible image rather than a disjointed set of image patches. We present a novel solution to image blending, particularly for the problem of hairstyle transfer, based on GAN-inversion. We propose a novel latent space for image blending which is better at preserving detail and encoding spatial information, and propose a new GAN-embedding algorithm which is able to slightly modify images to conform to a common segmentation mask. Our novel representation enables the transfer of the visual properties from multiple reference images including specific details such as moles and wrinkles, and because we do image blending in a latent-space we are able to synthesize images that are coherent. Our approach avoids blending artifacts present in other approaches and finds a globally consistent image. Our results demonstrate a significant improvement over the current state of the art in a user study, with users preferring our blending solution over 95 percent of the time.
Image compositing is a task of combining regions from different images to compose a new image. A common use case is background replacement of portrait images. To obtain high quality composites, professionals typically manually perform multiple editin g steps such as segmentation, matting and foreground color decontamination, which is very time consuming even with sophisticated photo editing tools. In this paper, we propose a new method which can automatically generate high-quality image compositing without any user input. Our method can be trained end-to-end to optimize exploitation of contextual and color information of both foreground and background images, where the compositing quality is considered in the optimization. Specifically, inspired by Laplacian pyramid blending, a dense-connected multi-stream fusion network is proposed to effectively fuse the information from the foreground and background images at different scales. In addition, we introduce a self-taught strategy to progressively train from easy to complex cases to mitigate the lack of training data. Experiments show that the proposed method can automatically generate high-quality composites and outperforms existing methods both qualitatively and quantitatively.
Casually-taken portrait photographs often suffer from unflattering lighting and shadowing because of suboptimal conditions in the environment. Aesthetic qualities such as the position and softness of shadows and the lighting ratio between the bright and dark parts of the face are frequently determined by the constraints of the environment rather than by the photographer. Professionals address this issue by adding light shaping tools such as scrims, bounce cards, and flashes. In this paper, we present a computational approach that gives casual photographers some of this control, thereby allowing poorly-lit portraits to be relit post-capture in a realistic and easily-controllable way. Our approach relies on a pair of neural networks---one to remove foreign shadows cast by external objects, and another to soften facial shadows cast by the features of the subject and to add a synthetic fill light to improve the lighting ratio. To train our first network we construct a dataset of real-world portraits wherein synthetic foreign shadows are rendered onto the face, and we show that our network learns to remove those unwanted shadows. To train our second network we use a dataset of Light Stage scans of human subjects to construct input/output pairs of input images harshly lit by a small light source, and variably softened and fill-lit output images of each face. We propose a way to explicitly encode facial symmetry and show that our dataset and training procedure enable the model to generalize to images taken in the wild. Together, these networks enable the realistic and aesthetically pleasing enhancement of shadows and lights in real-world portrait images
We propose semantic region-adaptive normalization (SEAN), a simple but effective building block for Generative Adversarial Networks conditioned on segmentation masks that describe the semantic regions in the desired output image. Using SEAN normaliza tion, we can build a network architecture that can control the style of each semantic region individually, e.g., we can specify one style reference image per region. SEAN is better suited to encode, transfer, and synthesize style than the best previous method in terms of reconstruction quality, variability, and visual quality. We evaluate SEAN on multiple datasets and report better quantitative metrics (e.g. FID, PSNR) than the current state of the art. SEAN also pushes the frontier of interactive image editing. We can interactively edit images by changing segmentation masks or the style for any given region. We can also interpolate styles from two reference images per region.
We address the problem of finding realistic geometric corrections to a foreground object such that it appears natural when composited into a background image. To achieve this, we propose a novel Generative Adversarial Network (GAN) architecture that utilizes Spatial Transformer Networks (STNs) as the generator, which we call Spatial Transformer GANs (ST-GANs). ST-GANs seek image realism by operating in the geometric warp parameter space. In particular, we exploit an iterative STN warping scheme and propose a sequential training strategy that achieves better results compared to naive training of a single generator. One of the key advantages of ST-GAN is its applicability to high-resolution images indirectly since the predicted warp parameters are transferable between reference frames. We demonstrate our approach in two applications: (1) visualizing how indoor furniture (e.g. from product images) might be perceived in a room, (2) hallucinating how accessories like glasses would look when matched with real portraits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا