ﻻ يوجد ملخص باللغة العربية
Many continuous gravitational wave searches are affected by instrumental spectral lines that could be confused with a continuous astrophysical signal. Several techniques have been developed to limit the effect of these lines by penalising signals that appear in only a single detector. We have developed a general method, using a convolutional neural network, to reduce the impact of instrumental artefacts on searches that use the SOAP algorithm. The method can identify features in corresponding frequency bands of each detector and classify these bands as containing a signal, an instrumental line, or noise. We tested the method against four different data-sets: Gaussian noise with time gaps, data from the final run of Initial LIGO (S6) with signals added, the reference S6 mock data challenge data set and signals injected into data from the second advanced LIGO observing run (O2). Using the S6 mock data challenge data set and at a 1% false alarm probability we showed that at 95% efficiency a fully-automated SOAP search has a sensitivity corresponding to a coherent signal-to-noise ratio of 110, equivalent to a sensitivity depth of 10 Hz$^{-1/2}$, making this automated search competitive with other searches requiring significantly more computing resources and human intervention.
We present an improved method of targeting continuous gravitational-wave signals in data from the LIGO and Virgo detectors with a higher efficiency than the time-domain Bayesian pipeline used in many previous searches. Our spectral interpolation algo
We consider a machine learning algorithm to detect and identify strong gravitational lenses on sky images. First, we simulate different artificial but very close to reality images of galaxies, stars and strong lenses, using six different methods, i.e
All-sky surveys for isolated continuous gravitational waves present a significant data-analysis challenge. Semicoherent search methods are commonly used to efficiently perform the computationally-intensive task of searching for these weak signals in
We present a comprehensive study of the effectiveness of Convolution Neural Networks (CNNs) to detect long duration transient gravitational-wave signals lasting $O(hours-days)$ from isolated neutron stars. We determine that CNNs are robust towards si
By now, tens of gravitational-wave (GW) events have been detected by the LIGO and Virgo detectors. These GWs have all been emitted by compact binary coalescence, for which we have excellent predictive models. However, there might be other sources for