ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Full Image Interactive Segmentation by Leveraging Within-image Appearance Similarity

80   0   0.0 ( 0 )
 نشر من قبل Stefano Pellegrini
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new approach to interactive full-image semantic segmentation which enables quickly collecting training data for new datasets with previously unseen semantic classes (A demo is available at https://youtu.be/yUk8D5gEX-o). We leverage a key observation: propagation from labeled to unlabeled pixels does not necessarily require class-specific knowledge, but can be done purely based on appearance similarity within an image. We build on this observation and propose an approach capable of jointly propagating pixel labels from multiple classes without having explicit class-specific appearance models. To enable long-range propagation, our approach first globally measures appearance similarity between labeled and unlabeled pixels across the entire image. Then it locally integrates per-pixel measurements which improves the accuracy at boundaries and removes noisy label switches in homogeneous regions. We also design an efficient manual annotation interface that extends the traditional polygon drawing tools with a suite of additional convenient features (and add automatic propagation to it). Experiments with human annotators on the COCO Panoptic Challenge dataset show that the combination of our better manual interface and our novel automatic propagation mechanism leads to reducing annotation time by more than factor of 2x compared to polygon drawing. We also test our method on the ADE-20k and Fashionista datasets without making any dataset-specific adaptation nor retraining our model, demonstrating that it can generalize to new datasets and visual classes.



قيم البحث

اقرأ أيضاً

We address interactive full image annotation, where the goal is to accurately segment all object and stuff regions in an image. We propose an interactive, scribble-based annotation framework which operates on the whole image to produce segmentations for all regions. This enables sharing scribble corrections across regions, and allows the annotator to focus on the largest errors made by the machine across the whole image. To realize this, we adapt Mask-RCNN into a fast interactive segmentation framework and introduce an instance-aware loss measured at the pixel-level in the full image canvas, which lets predictions for nearby regions properly compete for space. Finally, we compare to interactive single object segmentation on the COCO panoptic dataset. We demonstrate that our interactive full image segmentation approach leads to a 5% IoU gain, reaching 90% IoU at a budget of four extreme clicks and four corrective scribbles per region.
Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious -- a bottleneck for several deep learning applications. We take a step back to propose interactive and simultane ous segment annotation from multiple images guided by feature space projection and optimized by metric learning as the labeling progresses. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that our approach can surpass the accuracy of state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, it achieves 91.5% accuracy in a known semantic segmentation dataset, Cityscapes, being 74.75 times faster than the original annotation procedure. The appendix presents additional qualitative results. Code and video demonstration will be released upon publication.
The balance between high accuracy and high speed has always been a challenging task in semantic image segmentation. Compact segmentation networks are more widely used in the case of limited resources, while their performances are constrained. In this paper, motivated by the residual learning and global aggregation, we propose a simple yet general and effective knowledge distillation framework called double similarity distillation (DSD) to improve the classification accuracy of all existing compact networks by capturing the similarity knowledge in pixel and category dimensions, respectively. Specifically, we propose a pixel-wise similarity distillation (PSD) module that utilizes residual attention maps to capture more detailed spatial dependencies across multiple layers. Compared with exiting methods, the PSD module greatly reduces the amount of calculation and is easy to expand. Furthermore, considering the differences in characteristics between semantic segmentation task and other computer vision tasks, we propose a category-wise similarity distillation (CSD) module, which can help the compact segmentation network strengthen the global category correlation by constructing the correlation matrix. Combining these two modules, DSD framework has no extra parameters and only a minimal increase in FLOPs. Extensive experiments on four challenging datasets, including Cityscapes, CamVid, ADE20K, and Pascal VOC 2012, show that DSD outperforms current state-of-the-art methods, proving its effectiveness and generality. The code and models will be publicly available.
Current semantic segmentation models cannot easily generalize to new object classes unseen during train time: they require additional annotated images and retraining. We propose a novel segmentation model that injects visual priors into semantic segm entation architectures, allowing them to segment out new target labels without retraining. As visual priors, we use the activations of pretrained image classifiers, which provide noisy indications of the spatial location of both the target object and distractor objects in the scene. We leverage language semantics to obtain these activations for a target label unseen by the classifier. Further experiments show that the visual priors obtained via language semantics for both relevant and distracting objects are key to our performance.
This paper proposes a novel algorithm for the problem of structural image segmentation through an interactive model-based approach. Interaction is expressed in the model creation, which is done according to user traces drawn over a given input image. Both model and input are then represented by means of attributed relational graphs derived on the fly. Appearance features are taken into account as object attributes and structural properties are expressed as relational attributes. To cope with possible topological differences between both graphs, a new structure called the deformation graph is introduced. The segmentation process corresponds to finding a labelling of the input graph that minimizes the deformations introduced in the model when it is updated with input information. This approach has shown to be faster than other segmentation methods, with competitive output quality. Therefore, the method solves the problem of multiple label segmentation in an efficient way. Encouraging results on both natural and target-specific color images, as well as examples showing the reusability of the model, are presented and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا