ﻻ يوجد ملخص باللغة العربية
In this article, we propose measurement-induced nonlocality (MIN) quantified by Hellinger distance using von Neumann projective measurement. The proposed MIN is a bonafide measure of nonlocal correlation and is resistant to local ancilla problem. We obtain an analytical expression of the Hellinger distance MIN for general pure and $2 otimes n$ mixed states. In addition to comparing with similar measures, we explore the role of weak measurement in capturing nonlocal correlation.
Nonlocality plays a fundamental role in quantum information science. Recently, it has been theoretically predicted and experimentally demonstrated that the nonlocality of an entangled pair may be shared among multiple observers using weak measurement
Especially investigated in recent years, the Gaussian discord can be quantified by a distance between a given two-mode Gaussian state and the set of all the zero-discord two-mode Gaussian states. However, as this set consists only of product states,
We investigate the trade-off between information gain and disturbance for a class of weak von Neumann measurements on spin-$frac{1}{2}$ particles, and derive the unusual measurement pointer state that saturates this trade-off. We then consider the fu
Weak measurements may result in extra quantity of quantumness of correlations compared with standard projective measurement on a bipartite quantum state. We show that the quantumness of correlations by weak measurements can be consumed for informatio
In this paper we study the local linearization of the Hellinger--Kantorovich distance via its Riemannian structure. We give explicit expressions for the logarithmic and exponential map and identify a suitable notion of a Riemannian inner product. Sam