ترغب بنشر مسار تعليمي؟ اضغط هنا

$USp(32)$ Special Grand Unification

70   0   0.0 ( 0 )
 نشر من قبل Naoki Yamatsu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Naoki Yamatsu




اسأل ChatGPT حول البحث

We discuss a grand unified theory (GUT) based on a $USp(32)$ GUT gauge group broken to its subgroups including a special subgroup. A GUT based on an $SO(32)$ GUT gauge group has been discussed on six-dimensional (6D) orbifold space $M^4times T^2/mathbb{Z}_2$. It is inspired by the $SO(32)$ string theory behind the $SU(16)$ GUT whose $SU(16)$ is broken to a special subgroup $SO(10)$. Alternative direction is to embed an $SU(16)$ gauge group into a $USp(32)$ GUT gauge group, which is inspired by a non-supersymmetric symplectic-type $USp(32)$ string theory. In a $USp(32)$ GUT, one generation of the SM fermions is embedded into a 6D bulk Weyl fermion in a $USp(32)$ defining representation. For a three generation model, all the 6D and 4D gauge anomalies in the bulk and on the fixed points are canceled out without exotic chiral fermions at low energies. The SM Higgs scalar is embedded into a 6D bulk scalar field in a $USp(32)$ adjoint representation.

قيم البحث

اقرأ أيضاً

Gauge-Higgs grand unification is formulated. By extending $SO(5) times U(1)_X$ gauge-Higgs electroweak unification, strong interactions are incorporated in $SO(11)$ gauge-Higgs unification in the Randall-Sundrum warped space. Quarks and leptons are c ontained in spinor and vector multiplets of $SO(11)$. Although the KK scale can be as low as $10 $ TeV, proton decay is forbidden by a conserved fermion number in the absence of Majorana masses of neutrinos.
58 - Tony Gherghetta 2004
It is shown how grand unification can occur in models which are partly supersymmetric. The particle states which are composite do not contribute to the running of gauge couplings above the compositeness scale, while the elementary states contribute t he usual large logarithmns. This introduces a new differential running contribution to the gauge couplings from partly composite SU(5) matter multiplets. In particular, for partly supersymmetric models, the incomplete SU(5) elementary matter multiplets restore gauge coupling unification even though the usual elementary gaugino and Higgsino contributions need not be present.
$SO(11)$ gauge-Higgs grand unification is formulated in the six-dimensional hybrid warped space in which the fifth and sixth dimensions play as the electroweak and grand-unification dimensions. Fermions are introduced in ${bf 32}$, ${bf 11}$ and ${bf 1}$ of $SO(11)$. Small neutrino masses naturally emerge as a result of a new seesaw mechanism in the gauge-Higgs unification which is characterized by a $3 times 3$ mass matrix.
143 - Bei Jia , Jiang-Hao Yu 2014
To solve the doublet-triplet splitting problem in SU(5) grand unified theories, we propose a four dimensional orbifold grand unified theory by acting Z2 on the SU(5) gauge group. Without an adjoint Higgs, the orbifold procedure breaks the SU(5) gauge symmetry down to the standard model gauge group, and removes the triplet component of the fundamental SU(5) Higgs. In the supersymmetric framework, we show that the orbifold procedure removes two triplet superfields of the Higgs multiplets and leaves us with the minimal supersymmetric standard model, which also solves the hierarchy problem and realizes gauge coupling unification. We also discuss possible UV completions of the orbifold theories.
130 - Yutaka Hosotani 2016
4D Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. $SO(5) times U(1)$ gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase $theta_H$ in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for $theta_H < 0.1$, and predicts $Z$ bosons around 6 - 10 TeV with very broad widths. The scenario is genelarized to $SO(11)$ gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of $SO(11)$. Proton decay is naturally forbidden.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا