ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved model-independent determination of the strong-phase difference between $D^{0}$ and $bar{D}^{0}to K^{0}_{mathrm{S,L}}K^{+}K^{-}$ decays

79   0   0.0 ( 0 )
 نشر من قبل Krishnakumar Ravindran
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a measurement of the strong-phase difference between $D^{0}$ and $bar{D}^{0}to K^{0}_{rm S,L}K^{+}K^{-}$ decays, performed through a study of quantum-entangled pairs of charm mesons. The measurement exploits a data sample equivalent to an integrated luminosity of 2.93~fb$^{-1}$, collected by the BESIII detector in $e^{+}e^{-}$ collisions corresponding to the mass of the $psi(3770)$ resonance. The strong-phase difference is an essential input to the determination of the Cabibbo-Kobayashi-Maskawa (CKM) angle $gamma/phi_3$ through the decay $B^{-}to DK^{-}$, where $D$ can be either a $D^{0}$ or a $bar{D}^{0}$ decaying to $K^{0}_{rm S,L}K^{+}K^{-}$. This is the most precise measurement to date of the strong-phase difference in these decays.



قيم البحث

اقرأ أيضاً

248 - C. Thomas , G. Wilkinson 2012
Simulation studies are performed to assess the sensitivity of a model-independent analysis of the flavour-tagged decays $D^0 to K^0_{rm S}pi^+pi^-$ and $D^0 to K^0_{rm S}K^+K^-$ to mixing and CP violation. The analysis takes as input measurements of the $D$ decay strong-phase parameters that are accessible in quantum-correlated $D-bar{D}$ pairs produced at the $psi(3770)$ resonance. It is shown that the model-independent approach is well suited to the very large data sets expected at an upgraded LHCb experiment, or future high luminosity $e^+e^-$ facility, and that with 100M $K^0_{rm S}pi^+pi^-$ decays a statistical precision of around 0.01 and $0.7^circ$ is achievable on the CP violation parameters $r_{CP}$ and $a_{CP}$, respectively. Even with this very large sample the systematic uncertainties associated with the strong-phase parameters will not be limiting, assuming that full use is made of the available $psi(3770)$ data sets of CLEO-c and BES-III. Furthermore, it is demonstrated that large flavour-tagged samples can themselves be exploited to provide information on the strong-phase parameters, a feature that will be beneficial in the measurement of the CKM angle $gamma/phi_3$ with $B^- to DK^-$ decays.
A binned Dalitz plot analysis of the decays $B^0 to D K^{ast 0}$, with $D to K_{S}^{0} pi^{+} pi^{-}$ and $K_{S}^{0} K^{+} K^{-}$, is performed to measure the observables $x_pm$ and $y_pm$, which are related to the CKM angle $gamma$ and the hadronic parameters of the decays. The $D$ decay strong phase variation over the Dalitz plot is taken from measurements performed at the CLEO-c experiment, making the analysis independent of the $D$ decay model. With a sample of proton-proton collision data, corresponding to an integrated luminosity of $3.0,rm{fb}^{-1}$, collected by the LHCb experiment, the values of the $CP$ violation parameters are found to be $x_+ = 0.05 pm 0.35 pm 0.02$, $x_-=-0.31pm 0.20 pm 0.04$, $y_+=-0.81pm 0.28pm 0.06$ and $y_-=0.31pm 0.21 pm 0.05$, where the first uncertainties are statistical and the second systematic. These observables correspond to values $gamma$ = $(71 pm 20)^circ$, $r_{B^0} = 0.56pm 0.17$ and $delta_{B^0} = (204,^{+21}_{-20})^circ$. The parameters $r_{B^0}$ and $delta_{B^0}$ are the magnitude ratio and strong phase difference between the suppressed and favoured $B^0$ decay amplitudes, and have been measured in a region of $pm 50$ MeV/$c^2$ around the $K^{ast}(892)^{0}$ mass and with the magnitude of the cosine of the $K^{ast}(892)^{0}$ helicity angle larger than 0.4.
We report the first determination of the relative strong-phase difference between D^0 -> K^0_S,L K^+ K^- and D^0-bar -> K^0_S,L K^+ K^-. In addition, we present updated measurements of the relative strong-phase difference between D^0 -> K^0_S,L pi^+ pi^- and D^0-bar -> K^0_S,L pi^+ pi^-. Both measurements exploit the quantum coherence between a pair of D^0 and D^0-bar mesons produced from psi(3770) decays. The strong-phase differences measured are important for determining the Cabibbo-Kobayashi-Maskawa angle gamma/phi_3 in B^- -> K^- D^0-tilde decays, where D^0-tilde is a D^0 or D^0-bar meson decaying to K^0_S h^+ h^- (h=pi,K), in a manner independent of the model assumed to describe the D^0 -> K^0_S h^+ h^- decay. Using our results, the uncertainty in gamma/phi_3 due to the error on the strong-phase difference is expected to be between 1.7 and 3.9 degrees for an analysis using B^- K^- D^0-tilde D^0-tilde -> K^0_S pi^+ pi^- decays, and between 3.2 and 3.9 degrees for an analysis based on B^- -> K^- D^0-tilde, D^0-tilde -> K^0_S K^+ K^- decays. A measurement is also presented of the CP-odd fraction, F_-, of the decay D^0 -> K^0_S K^+ K^- in the region of the phi -> K^+ K^- resonance. We find that in a region within 0.01 GeV^2/c^4 of the nominal phi mass squared F_- > 0.91 at the 90% confidence level.
94 - K. Arms , et al. 2003
Using a data sample corresponding to 13.7 fb^-1 collected with the CLEO II and II.V detectors, we report new branching fraction measurements for two Cabibbo-suppressed decay modes of the D^+ meson: Br(D^+ to pi^+ pi^0) = (1.3 +/- 0.2) x 10^-3 and Br( D^+ to bar{K}^0 K^+) = (5.2 +/- 0.6) x 10^-3 which are significant improvements over past measurements. The errors include statistical and systematical uncertainties as well as the uncertainty in the absolute D^+ branching fraction scale. We also set the first 90% confidence level upper limit on the branching fraction of the doubly Cabibbo-suppressed decay mode Br(D^+ to K^+ pi^0) < 4.2 x 10^-4.
The real and imaginary parts of the bar K^0 d scattering length are extracted from the bar K^0 d mass spectrum obtained from the reaction pp to d bar K^0 K^+ measured recently at the Cooler Synchrotron COSY at Julich. We extract a new limit on the K^ - d scattering length, namely Im a le 1.3 fm and |Re a| le 1.3 fm. The limit for the imaginary part of the K^- d scattering length is supported by data on the total K^- d cross sections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا