ﻻ يوجد ملخص باللغة العربية
We consider the effects of weak gravitational lensing on observations of 196 spectroscopically confirmed Type Ia Supernovae (SNe Ia) from years 1 to 3 of the Dark Energy Survey (DES). We simultaneously measure both the angular correlation function and the non-Gaussian skewness caused by weak lensing. This approach has the advantage of being insensitive to the intrinsic dispersion of SNe Ia magnitudes. We model the amplitude of both effects as a function of $sigma_8$, and find $sigma_8 = 1.2^{+0.9}_{-0.8}$. We also apply our method to a subsample of 488 SNe from the Joint Light-curve Analysis (JLA) (chosen to match the redshift range we use for this work), and find $sigma_8 = 0.8^{+1.1}_{-0.7}$. The comparable uncertainty in $sigma_8$ between DES-SN and the larger number of SNe from JLA highlights the benefits of homogeneity of the DES-SN sample, and improvements in the calibration and data analysis.
We study the feasibility of detecting weak lensing spatial correlations between Supernova (SN) Type Ia magnitudes with present (Dark Energy Survey, DES) and future (Large Synoptic Survey Telescope, LSST) surveys. We investigate the angular auto-corre
We present spectroscopy from the first three seasons of the Dark Energy Survey Supernova Program (DES-SN). We describe the supernova spectroscopic program in full: strategy, observations, data reduction, and classification. We have spectroscopically
We present an improved measurement of the Hubble constant (H_0) using the inverse distance ladder method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing dista
We present the results of a study of selection criteria to identify Type Ia supernovae photometrically in a simulated mixed sample of Type Ia supernovae and core collapse supernovae. The simulated sample is a mockup of the expected results of the Dar
We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first t