ﻻ يوجد ملخص باللغة العربية
Non-Fermi liquid physics is a ubiquitous feature in strongly correlated metals, manifesting itself in anomalous transport properties, such as a $T$-linear resistivity in experiments. However, its theoretical understanding in terms of microscopic models is lacking despite decades of conceptual work and attempted numerical simulations. Here we demonstrate that a combination of sign problem-free quantum Monte Carlo sampling and quantum loop topography, a physics-inspired machine learning approach, can map out the emergence of non-Fermi liquid physics in the vicinity of a quantum critical point with little prior knowledge. Using only three parameter points for training the underlying neural network, we are able to reproducibly identify a stable non-Fermi liquid regime tracing the fan of a metallic quantum critical points at the onset of both spin-density wave and nematic order. Our study thereby provides an important proof-of-principle example that new physics can be detected via unbiased machine-learning approaches.
Quantum many-fermion systems give rise to diverse states of matter that often reveal themselves in distinctive transport properties. While some of these states can be captured by microscopic models accessible to numerical exact quantum Monte Carlo si
Non-Fermi liquid behavior and pseudogap formation are among the most well-known examples of exotic spectral features observed in several strongly correlated materials such as the hole-doped cuprates, nickelates, iridates, ruthenates, ferropnictides,
Heavy electron metals on the verge of a quantum phase transition to magnetism show a number of unusual non-fermi liquid properties which are poorly understood. This article discusses in a general way various theoretical aspects of this phase transiti
Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin $frac 1 2$ itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with
The phase diagram of BaVS3 is studied under pressure using resistivity measurements. The temperature of the metal to nonmagnetic Mott insulator transition decreases under pressure, and vanishes at the quantum critical point p_cr=20kbar. We find two k