ﻻ يوجد ملخص باللغة العربية
We experimentally study the coherence time of a below-threshold Raman laser in which the gain medium is a gas of magneto-optically trapped atoms. The second-order optical coherence exhibits photon bunching with a correlation time which is varied by two orders of magnitude by controlling the gain. Results are in good agreement with a simple analytic model which suggests the effect is dominated by gain, rather than dispersion, in this system. Cavity ring-down measurements show the photon lifetime, related to the first-order coherence time, is also increased.
We address the problem of achieving a random laser with a cloud of cold atoms, in which gain and scattering are provided by the same atoms. In this system, the elastic scattering cross-section is related to the complex atomic polarizability. As a con
The rectification of noise into directed movement or useful energy is utilized by many different systems. The peculiar nature of the energy source and conceptual differences between such Brownian motor systems makes a characterization of the performa
Over the last decade, optical atomic clocks have surpassed their microwave counterparts and now offer the ability to measure time with an increase in precision of two orders of magnitude or more. This performance increase is compelling not only for e
We have observed the propagation of an approximately 35 ns long light pulse with a negative group velocity through a laser-cooled 85Rb atomic medium. The anomalous dispersion results from linear atom-light interaction, and is unrelated to long-lived
We investigate trapping geometries for cold, neutral atoms that can be created in the evanescent field of a tapered optical fibre by combining the fundamental mode with one of the next lowest possible modes, namely the HE21 mode. Counter propagating