ترغب بنشر مسار تعليمي؟ اضغط هنا

Janus Monolayers of Magnetic Transition Metal Dichalcogenides as an All-in-One Platform for Spin-Orbit Torque

133   0   0.0 ( 0 )
 نشر من قبل Aurelien Manchon
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically predict that vanadium-based Janus dichalcogenide monolayers constitute an ideal platform for spin-orbit-torque memories. Using first principles calculations, we demonstrate that magnetic exchange and magnetic anisotropy energies are higher for heavier chalcogen atoms, while the broken inversion symmetry in the Janus form leads to the emergence of Rashba-like spin-orbit coupling. The spin-orbit torque efficiency is evaluated using optimized quantum transport methodology and found to be comparable to heavy nonmagnetic metals. The coexistence of magnetism and spin-orbit coupling in such materials with tunable Fermi-level opens new possibilities for monitoring magnetization dynamics in the perspective of non-volatile magnetic random access memories.



قيم البحث

اقرأ أيضاً

In transition-metal dichalcogenides, electrons in the K-valleys can experience both Ising and Rashba spin-orbit couplings. In this work, we show that the coexistence of Ising and Rashba spin-orbit couplings leads to a special type of valley Hall effe ct, which we call spin-orbit coupling induced valley Hall effect. Importantly, near the conduction band edge, the valley-dependent Berry curvatures generated by spin-orbit couplings are highly tunable by external gates and dominate over the intrinsic Berry curvatures originating from orbital degrees of freedom under accessible experimental conditions. We show that the spin-orbit coupling induced valley Hall effect is manifested in the gate dependence of the valley Hall conductivity, which can be detected by Kerr effect experiments.
Current-induced control of magnetization in ferromagnets using spin-orbit torque (SOT) has drawn attention as a new mechanism for fast and energy efficient magnetic memory devices. Energy-efficient spintronic devices require a spin-current source wit h a large SOT efficiency (${xi}$) and electrical conductivity (${sigma}$), and an efficient spin injection across a transparent interface. Herein, we use single crystals of the van der Waals (vdW) topological semimetal WTe$_2$ and vdW ferromagnet Fe$_3$GeTe$_2$ to satisfy the requirements in their all-vdW-heterostructure with an atomically sharp interface. The results exhibit values of ${xi}{approx}4.6$ and ${sigma}{approx}2.25{times}10^5 {Omega}^{-1} m^{-1}$ for WTe$_2$. Moreover, we obtain the significantly reduced switching current density of $3.90{times}10^6 A/cm^2$ at 150 K, which is an order of magnitude smaller than those of conventional heavy-metal/ ferromagnet thin films. These findings highlight that engineering vdW-type topological materials and magnets offers a promising route to energy-efficient magnetization control in SOT-based spintronics.
The photoluminescence (PL) spectrum of transition metal dichalcogenides (TMDs) shows a multitude of emission peaks below the bright exciton line and not all of them have been explained yet. Here, we study the emission traces of phonon-assisted recomb inations of momentum-dark excitons. To this end, we develop a microscopic theory describing simultaneous exciton, phonon and photon interaction and including consistent many-particle dephasing. We explain the drastically different PL below the bright exciton in tungsten- and molybdenum-based materials as result of different configurations of bright and dark states. In good agreement with experiments, we show that WSe$_2$ exhibits clearly visible low-temperature PL signals stemming from the phonon-assisted recombination of momentum-dark excitons.
We theoretically study the interaction of an ultrafast intense linearly polarized optical pulse with monolayers of transition metal dichalcogenides (TMDCs). Such a strong pulse redistributes electrons between the bands and generates femtosecond curre nts during the pulse. Due to the large bandwidth of the incident pulse, this process is completely off-resonant. While in TMDCs the time-reversal symmetry is conserved, the inversion symmetry is broken and these monolayers have the axial symmetry along armchair direction but not along the zigzag one. Therefore, the pulse polarized along the asymmetric direction of TMDC monolayer generates both longitudinal, i.e., along the direction of polarization, and transverse, i.e., in the perpendicular direction, currents. Such currents result in charge transfer through the system. We study different TMDC materials and show how the femtosecond transport in TMDC monolayers depend on their parameters, such as lattice constant and bandgap.
Recently, signatures of nonlinear Hall effects induced by Berry-curvature dipoles have been found in atomically thin 1T/Td-WTe$_2$. In this work, we show that in strained polar transition-metal dichalcogenides(TMDs) with 2H-structures, Berry-curvatur e dipoles created by spin degrees of freedom lead to strong nonlinear Hall effects. Under an easily accessible uniaxial strain of order 0.2%, strong nonlinear Hall signals, characterized by a Berry-curvature dipole on the order of 1{AA}, arise in electron-doped polar TMDs such as MoSSe, and this is easily detectable experimentally. Moreover, the magnitude and sign of the nonlinear Hall current can be easily tuned by electric gating and strain. These properties can be used to distinguish nonlinear Hall effects from classical mechanisms such as ratchet effects. Importantly, our system provides a potential scheme for building electrically switchable energy-harvesting rectifiers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا