ترغب بنشر مسار تعليمي؟ اضغط هنا

Traffic Simulator for Multibeam Satellite Communication Systems

161   0   0.0 ( 0 )
 نشر من قبل Hayder Al-Hraishawi
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Assume that a multibeam satellite communication system is designed from scratch to serve a particular area with maximal resource utilization and to satisfactorily accommodate the expected traffic demand. The main design challenge here is setting optimal system parameters such as number of serving beams, beam directions and sizes, and transmit power. This paper aims at developing a tool, multibeam satellite traffic simulator, that helps addressing these fundamental challenges, and more importantly, provides an understanding to the spatial-temporal traffic pattern of satellite networks in large-scale environments. Specifically, traffic demand distribution is investigated by processing credible datasets included three major input categories of information: (i) population distribution for broadband Fixed Satellite Services (FSS), (ii) aeronautical satellite communications, and (iii) vessel distribution for maritime services. This traffic simulator combines this three-dimensional information in addition to time, locations of terminals, and traffic demand. Moreover, realistic satellite beam patterns have been considered in this work, and thus, an algorithm has been proposed to delimit the coverage boundaries of each satellite beam, and then compute the heterogeneous traffic demand at the footprint of each beam. Furthermore, another algorithm has been developed to capture the inherent attributes of satellite channels and the effects of multibeam interference. Data-driven modeling for satellite traffic is crucial nowadays to design innovative communication systems, e.g., precoding and beam hopping, and to devise efficient resource management algorithms.



قيم البحث

اقرأ أيضاً

Non-orthogonal multiple access (NOMA) schemes are being considered in 5G new radio developments and beyond. Although seminal papers demonstrated that NOMA outperforms orthogonal access in terms of capacity and user fairness, the majority of works hav e been devoted to the wireless terrestrial arena. Therefore, it is worth to study how NOMA can be implemented in other types of communications, as for instance the satellite ones, which are also part of the 5G infrastructure. Although communications through a satellite present a different architecture than those in the wireless terrestrial links, NOMA can be an important asset to improve their performance. This article introduces a general overview of how NOMA can be applied to this different architecture. A novel taxonomy is presented based on different multibeam transmission schemes and guidelines that open new avenues for research in this topic are provided.
Next-generation of satellite communication (SatCom) networks are expected to support extremely high data rates for a seamless integration into future large satellite-terrestrial networks. In view of the coming spectral limitations, the main challenge is to reduce the cost per bit, which can only be achieved by enhancing the spectral efficiency. In addition, the capability to quickly and flexibly assign radio resources according to the traffic demand distribution has become a must for future multibeam broadband satellite systems. This article presents the radio resource management problems encountered in the design of future broadband SatComs and provides a comprehensive overview of the available techniques to address such challenges. Firstly, we focus on the demand-matching formulation of the power and bandwidth assignment. Secondly, we present the scheduling design in practical multibeam satellite systems. Finally, a number of future challenges and the respective open research topics are described.
Beamforming has great potential for joint communication and sensing (JCAS), which is becoming a demanding feature on many emerging platforms such as unmanned aerial vehicles and smart cars. Although beamforming has been extensively studied for commun ication and radar sensing respectively, its application in the joint system is not straightforward due to different beamforming requirements by communication and sensing. In this paper, we propose a novel multibeam framework using steerable analog antenna arrays, which allows seamless integration of communication and sensing. Different to conventional JCAS schemes that support JCAS using a single beam, our framework is based on the key innovation of multibeam technology: providing fixed subbeam for communication and packet-varying scanning subbeam for sensing, simultaneously from a single transmitting array. We provide a system architecture and protocols for the proposed framework, complying well with modern packet communication systems with multicarrier modulation. We also propose low-complexity and effective multibeam design and generation methods, which offer great flexibility in meeting different communication and sensing requirements. We further develop sensing parameter estimation algorithms using conventional digital Fourier transform and 1D compressive sensing techniques, matching well with the multibeam framework. Simulation results are provided and validate the effectiveness of our proposed framework, beamforming design methods and the sensing algorithms.
Multibeam technology enables the use of two or more subbeams for joint communication and radio sensing, to meet different requirements of beamwidth and pointing directions. Generating and optimizing multibeam subject to the requirements is critical a nd challenging, particularly for systems using analog arrays. This paper develops optimal solutions to a range of multibeam design problems, where both communication and sensing are considered. We first study the optimal combination of two pre-generated subbeams, and their beamforming vectors, using a combining phase coefficient. Closed-form optimal solutions are derived to the constrained optimization problems, where the received signal powers for communication and the beamforming waveforms are alternatively used as the objective and constraint functions. We also develop global optimization methods which directly find optimal solutions for a single beamforming vector. By converting the original intractable complex NP-hard global optimization problems to real quadratically constrained quadratic programs, near-optimal solutions are obtained using semidefinite relaxation techniques. Extensive simulations validate the effectiveness of the proposed constrained multibeam generation and optimization methods.
Non-geostationary (NGSO) satellites are envisioned to support various new communication applications from countless industries. NGSO systems are known for a number of key features such as lower propagation delay, smaller size, and lower signal losses in comparison to the conventional geostationary (GSO) satellites, which will enable latency-critical applications to be provided through satellites. NGSO promises a dramatic boost in communication speed and energy efficiency, and thus, tackling the main inhibiting factors of commercializing GSO satellites for broader utilizations. However, there are still many NGSO deployment challenges to be addressed to ensure seamless integration not only with GSO systems but also with terrestrial networks. These unprecedented challenges are discussed in this paper, including coexistence with GSO systems in terms of spectrum access and regulatory issues, satellite constellation and architecture designs, resource management problems, and user equipment requirements. Beyond this, the promised improvements of NGSO systems have motivated this survey to provide the state-of-the-art NGSO research focusing on the communication prospects, including physical layer and radio access technologies along with the networking aspects and the overall system features and architectures. We also outline a set of innovative research directions and new opportunities for future NGSO research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا