ﻻ يوجد ملخص باللغة العربية
The intrinsic temporality of learning demands the adoption of methodologies capable of exploiting time-series information. In this study we leverage the sequence data framework and show how data-driven analysis of temporal sequences of task completion in online courses can be used to characterise personal and group learners behaviors, and to identify critical tasks and course sessions in a given course design. We also introduce a recently developed probabilistic Bayesian model to learn sequence trajectories of students and predict student performance. The application of our data-driven sequence-based analyses to data from learners undertaking an on-line Business Management course reveals distinct behaviors within the cohort of learners, identifying learners or groups of learners that deviate from the nominal order expected in the course. Using course grades a posteriori, we explore differences in behavior between high and low performing learners. We find that high performing learners follow the progression between weekly sessions more regularly than low performing learners, yet within each weekly session high performing learners are less tied to the nominal task order. We then model the sequences of high and low performance students using the probablistic Bayesian model and show that we can learn engagement behaviors associated with performance. We also show that the data sequence framework can be used for task centric analysis; we identify critical junctures and differences among types of tasks within the course design. We find that non-rote learning tasks, such as interactive tasks or discussion posts, are correlated with higher performance. We discuss the application of such analytical techniques as an aid to course design, intervention, and student supervision.
The large-scale online management systems (e.g. Moodle), online web forums (e.g. Piazza), and online homework systems (e.g. WebAssign) have been widely used in the blended courses recently. Instructors can use these systems to deliver class content a
In a Massive Open Online Course (MOOC), predictive models of student behavior can support multiple aspects of learning, including instructor feedback and timely intervention. Ongoing courses, when the student outcomes are yet unknown, must rely on mo
The widespread adoption of online courses opens opportunities for the analysis of learner behaviour and for the optimisation of web-based material adapted to observed usage. Here we introduce a mathematical framework for the analysis of time series c
In an increasingly polarized world, demagogues who reduce complexity down to simple arguments based on emotion are gaining in popularity. Are opinions and online discussions falling into demagoguery? In this work, we aim to provide computational tool
Online hate is a growing concern on many social media platforms and other sites. To combat it, technology companies are increasingly identifying and sanctioning `hateful users rather than simply moderating hateful content. Yet, most research in onlin