ﻻ يوجد ملخص باللغة العربية
The isoscalar $pn$ pair is expected to emerge in nuclei having the similar proton and neutron numbers but there is no clear experimental evidence for it. We aim to clarify the correspondence between the $pn$ pairing strength in many-body calculation and the triple differential cross section (TDX) of proton-induced deuteron knockout ($p,pd$) reaction on $^{16}$O. The radial wave function of the isoscalar $pn$ pair with respect to the center of $^{16}$O is calculated with the energy density functional (EDF) approach and is implemented in the distorted wave impulse approximation (DWIA) framework. The $pn$ pairing strength $V_0$ in the EDF calculation is varied and the corresponding change in the TDX is investigated. A clear $V_0$ dependence of the TDX is found for the $^{16}$O($p,pd$)$^{14}$N($1_2^+$) at $101.3$ MeV. The nuclear distortion is found to make the $V_0$ dependence stronger. Because of the clear $V_0$-TDX correspondence, the ($p,pd$) reaction will be a promising probe for the isoscalar $pn$ pair in nuclei. For quantitative discussion, further modification of the description of the reaction process will be necessary.
We study the evolution of the eep cross section on nuclei with increasing asymmetry between the number of neutrons and protons. The calculations are done within the framework of the nonrelativistic and relativistic distorted-wave impulse approximatio
We propose a particle number conserving formalism for the treatment of isovector-isoscalar pairing in nuclei with $N>Z$. The ground state of the pairing Hamiltonian is described by a quartet condensate to which is appended a pair condensate formed by
We discuss the isoscalar $T=0, S=1$ pairing correlation in the low-lying states of $^{102}{rm Sb}={}^{100}{rm Sn}+p+n$ nucleus. To this end, we employ ${rm core}+p+n$ three-body model with the model space constructed by self-consistent mean-field cal
Neutron-proton (np-) pairing is expected to play an important role in the N Z nuclei. In general, it can have isovector and isoscalar character. The existence of isovector np-pairing is well established. On the contrary, it is still debated whether t
Whereas a nonrelativistic distorted wave model fails to quantitatively describe analyzing power data for exclusive proton-induced proton-knockout from the 3s_{1/2} state in Pb-208 at 202 MeV, the corresponding relativistic prediction provides a perfe