ترغب بنشر مسار تعليمي؟ اضغط هنا

Speeding Up Particle Slowing using Shortcuts to Adiabaticity

73   0   0.0 ( 0 )
 نشر من قبل John Bartolotta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for slowing particles by laser fields that potentially has the ability to generate large forces without the associated momentum diffusion that results from the random directions of spontaneously scattered photons. In this method, time-resolved laser pulses with periodically modified detunings address an ultranarrow electronic transition to reduce the particle momentum through repeated absorption and stimulated emission cycles. We implement a shortcut to adiabaticity approach that is based on Lewis-Riesenfeld invariant theory. This affords our scheme the advantages of adiabatic transfer, where there can be an intrinsic insensitivity to the precise strength and detuning characteristics of the applied field, with the advantages of rapid transfer that is necessary for obtaining a short slowing distance. For typical parameters of a thermal oven source that generates a particle beam with a central velocity on the order of meters per second, this could result in slowing the particles to near stationary in less than a millimeter. We compare the slowing scheme to widely-implemented slowing techniques that rely on radiation pressure forces and show the advantages that potentially arise when the excited state decay rate is small. Thus, this scheme is a particularly promising candidate to slow narrow-linewidth systems that lack closed cycling transitions, such as occurs in certain molecules.



قيم البحث

اقرأ أيضاً

123 - Yue Ban , Xi Chen , E. Torrontegui 2020
The quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schem es. Motivated by the techniques of shortcuts to adiabaticity, we propose a speed-up quantum perceptron where a control field on the perceptron is inversely engineered leading to a rapid nonlinear response with a sigmoid activation function. This results in faster overall perceptron performance compared to quasi-adiabatic protocols, as well as in enhanced robustness against imperfections in the controls.
We demonstrate the use of shortcuts to adiabaticity protocols for initialisation, readout, and coherent control of dressed states generated by closed-contour, coherent driving of a single spin. Such dressed states have recently been shown to exhibit efficient coherence protection, beyond what their two-level counterparts can offer. Our state transfer protocols yield a transfer fidelity of ~ 99.4(2) % while accelerating the transfer speed by a factor of 2.6 compared to the adiabatic approach. We show bi-directionality of the accelerated state transfer, which we employ for direct dressed state population readout after coherent manipulation in the dressed state manifold. Our results enable direct and efficient access to coherence-protected dressed states of individual spins and thereby offer attractive avenues for applications in quantum information processing or quantum sensing.
A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlati ons of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential analogous to those used in soliton control. The method is extended to a broad family of many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.
164 - S. Iba~nez , Xi Chen , 2012
Different techniques to speed up quantum adiabatic processes are currently being explored for applications in atomic, molecular and optical physics, such as transport, cooling and expansions, wavepacket splitting, or internal state control. Here we e xamine the capabilities of superadiabatic iterations to produce a sequence of shortcuts to adiabaticity. The general formalism is worked out as well as examples for population inversion in a two-level system.
Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the energy cost of the shortcut by the energy consumption of the system enlarged by including the control device. A mechani cal model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption are possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and recovered by perfect regenerative braking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا